Abstract
Rainfall is the most important factor to induce landslide, of which rainfall pattern is the main influence parameter. Generally, during the analysis of slope stability under different rainfall patterns, the influence of pore water pressure in saturated zone is mostly considered, while the influence of pore air pressure in unsaturated zone is seldom analyzed from the angle of water-air coupling. Based on the theory of water-air two-phase flow, this paper calculated and simulated the variation of pore air pressure changing with the rainfall time under three typical rainfall patterns (weakened, concentrated and enhanced), and combined the slope stability analysis model of considering pore air pressure to study the influence of pore air pressure on slope stability. The results show that the influence of pore air pressure on slope stability is detrimental under the three rainfall patterns. And the response duration of the pore air pressure is the longest under the weakened rainfall pattern, the concentrated pattern is the second, and the enhanced pattern is the shortest. The influence of pore air pressure on the safety factor of slope stability is the greatest under the weakened rainfall pattern, which can easily lead to the instability of the slope. Thus, we shall take the necessary engineering measures in advance in the event of such rainfall pattern prediction.