Aging studies of nanostructured inorganic membrane for fuel cell applications

L.Bouchama*, N.Azzouz, N.Boukemouche Laboratory of the Interactions Materials-Environment (LIME), University of Jijel P.O.Box 98 Ouled Aissa, Jijel, 18000, Algeria e-mail:*bouchmalamia@yahoo.fr, nourazzouz@yahoo.fr, nawboukmouche@yahoo.com

Abstract—This paper presents structural and electrochemical characterizations of nanoporous alumina membranes used as template for ionic conductor membrane allowing to fabricate different assemblies to be used in different types of fuel cell. The alumina membrane produced via a double anodising process. This typical procedure of membrane preparation is based on a two-step self-organized anodising of aluminium carried out at the temperature of about 5 $^\circ$ C. In this study, alumina membranes were fabricated in 0.3 M oxalic acid under the anodising potential range of 45 V. Ageing behaviour has been investigated in potasium sulphate solution, using electrochemical impedance spectroscopy (EIS). It was found that the lifetime of the membrane depends on its time of immersion which drives the formation of hydration products. The analysis was completed with the aid of the SEM and X-ray diffraction analysis. The SEM image of alumina membrane shows the array of circular pores is randomly distributed on the surface. The resulting array of nanopores have a pore diameter strongly depends on duration of anodising. The XRD shown that non-crystalline phase was obtained (amorphou alumina).

Keywords-Alumina membrane; Double anodising; find ce

I. INTRODUCTION

Due to the high cost of polymeric membranes and poisoning effects of catalyst in presence of hydrocarbon fuel there is a large research effort aimen to exploit fuel cell assembly based on lower and membranes and electrocatalytic materials [1] to his frame different strategies have been suggested based on the fabrication of membranes, which could obviate at higher temperatures where poisoning effects of catalysts are minimized. This choice would exclude the actual polymeric membranes employed in PEMPS which lose their stability and good performance as poton conductor owing to dehydration effects.

In this first we have suggested [2] the use of porous anodic ablain membranes as template for the fabrication, by filing he pores of alumina membranes with a protonic conducter, of inorganic membranes to use in fuel cell at temperatures higher than usual PEMFC. Porous alumina membranes can be electrochemically grown in a rather wide range of thickness (from few micron to hundreds micron) and porosity (from 10% to 30%) with pores diameter ranging from 20 to 200 nm depending on anodising parameters [3], [4]. J.P. Chopart, A.L. Daltin Laboratory of Materials Science and Engineering (LISM), University of Reims, France (LISM), University of Reims Champagne-Ardenne, French e-mail:jp.chopart@univ-reims.fr, al.daltin@univ-reims.fr

By taking into account the good the mar stability of alumina membranes in a rather wide ring of temperatures our approach will make possible to prepare different MEA for different temperatures provide that a suitable electrolyte and pore filling procedure is devised The application of procedure the two anodising steps gives a self. organizer oppose structure on anodised

The application of procedure the two anodising steps gives a self- organized porous structure on anodised aluminium, this technique become promising for preparing such ordered portes that the procedure involves two separate anodising processes. The first anodising process consists of a short period of anodising forming the disordered porous structure. Water the removal of the oxide, an array of highly ordered dimples is formed on aluminium. These dimples act as investion sites for growing highly ordered porous structure [34]

In this work we present the preliminary results of a more systematic research aimed to exploit the possible use of porous alumina membranes as support for preparation of membrane electrode assembly (MEA) to be used in hydrogen –oxygen fuel cell, operating in a range of temperature between 423 and 443 K.

II. EXPERIMENTAL METHODE

A. Materials

Rectangular coupons ($50 \times 30 \times 3$ mm) of a cast Al–Mg alloy were used as the substrate for elaboration of alumina membrane . The composition of this alloy (wt %) was 2.75 % Mg, 0.1 % Mn, 0.4 % Si, 0.1% Cu, 0.4% Fe, 0.25% Zn, 0.25% Cr other, and Al balance.

B. Anodising procedure

Prior to anodising, aluminium sheet was and electropolished at a degreased in acetone, constant current of 0.5 A cm⁻² during 1 min at 10 °C in an electrolyte containing perchloric acid and ethanol in a ratio of 1:4 by volume and anodised at 5 °C in oxalic acid solution 0.3 M at a constant potential of 45 V during 4 h and 2 h for the first and the second samples the anodic oxide layer, part of respectively. Then which was disordered, was removed in a phosphoric acid. Next, the plate was anodised again during 8h for the first sample and 4 h for the second sample in the same conditions of the first anodising step. After the second anodising step, the remaining aluminium was removed in a satured solution of CuCl₂. Subsequently, the transparent AAO was etched by a 0.3 mol/L phosphoric acid solution. Finally the resulting AAO films were cleaned thoroughly with deionised water and dried at 50 $^{\circ}$ C.

Samples treated were then subjected to analyse by the X-Ray diffractometer, D 8-ADVANCE model of BRUKER-AXS (University of Jijel), followed the observations by the scanning electron microscope (SEM of LACM-DTI Laboratory in Reims University, French).

The ageing behaviour of alumina membrane was studied under the potentiostatic control of a Radiometer Analytical type Voltalab 40 PGZ301 potentiostat / galvanostat controlled by a computer using a software Voltamaster 4 for treatment and data acquisition (Laboratory LIME University of Jijel), using the conventional threeelectrode configuration. Electrochemical impedance measurement was carried out at room temperature by applying AC amplitude of 10 mV on open-circuit potential over the frequency range 100 kHz to 1 mHz, with five points per decade. The ageing behaviour of alumina membrane was studied by immerging of the samples in an unstirred and aerated 0.2 M potasium sulphate solution at different periods of immersion: 30 min, 2, 4 and 24 h, respectively. A three-electrode cell setup with a saturated calomel electrode (SCE) as reference electrode and platinum plate as counter electrode was used. The exposed surface area of samples was 1 cm². Impedance diagrams were recorded for the anodised specimens, immediately after anodising and after different ageing.

III. RESULTS AND DISCUSSION

A. Structure of alumina membrane

The The XRD patterns for the alumina membrane generated by a double anodising for the two specimens are shown in Fig. 1. It exhibits multiple intense peaks that are clearly distinguishable. All of the diffraction peaks can be perfectly indexed to the face-central cloud Al, and the peak positions are in good agreement with the known data (JCPDS 85-1327). It appears that the structure of the alumina membrane is composed on non-crystalline, amorphous alumina was obtained, is near be seen in Figure 1(a–b) in the 2 Θ angle ranging for 22° to 82°; and by both samples there is a preferential atuminium orientation in the planes [111], [200], [2201511], [222], [101]; which indicates that the phase transformation from Al to Al₂O₃ occurs more easily, which is similar to the structure of the films obtained from other active sectorlytes [6], [7].

Comparing the XRD spectra of the two specimens is found that: in the case of the first specimen ,there are two peaks which locate in positions of $(2\Theta = 16.652^\circ, 25.478^\circ$ respectively) corresponding to Mg particles, where it considered as impurities on the surface of the alumina membrane, and the peak positions are in good agreement with the known data (JCPDS 01-1141).

Figure 1. ARD pattern of alumina membrane obtained by a double anotising process. Anodising is carried out in a 0.3 M oxalic acid, under voltages. V at temperature 5 ° C during 4 h, 2 h for the first anodising step and 8h, 4 h for the second anodising step for specimens a and b, respectively.

B. Scanning electron microscopy

The surface texture of the membranes was examined by SEM. Figure 2 shows the surface morphology of the alumina membranes formed at 5 °C in oxalic acid 0.3 M solution. It can be seen that circular pores are randomly distributed on the surface. However, because of the different growth velocity, the depth of some pores is different. Some has imbedded into the bottom of aluminium, while, some has just formed, such as those darkish pores in Figure 2. Remarkable defects (fissures and cavities) are observed on the microphotographs obtained that is due to the roughness of the surface prior to anodising process. It may indicate a heterogeneous distribution of the pore.

Comparing the two membranes obtained by the different anodising time it is remarkable that the sample anodised during 4 hours and 8 hours for the first and the second anodising step, respectively has a porosity greater than that obtained during 2h, 4h the first and second anodised, respectively this may be explained by the first sample has enough time to the magnification of the membrane cell and consequences the wall of the pore, pore diameter and the distance interpore.

Figure 2. SEM surface morphology of alumina membrane obtained by a double anodising process. Anodising is carried out in a 0.3 M oxalic acid under voltage 45 V at temperature 5 ° C during 4 h, 2 h for the first step of anodising and 8h, 4 h for the second step of anodising for sample a and b. respectively.

C. Impedance characteristics of alumina memory

Figure 3(a - b) shows the impedance plots obtained by impedance spectroscopy measurements was membranes in contact with K_2SO_4 (0.2M) solution at different time of immersion. Similar curves were obtained in the different time of immersion. The analysis compedance data was carried out by complex plane to whod, which involves plotting the impedance imaginary part (-Zimg) versus the real part (Zreal) as in Figure 3(a,b).

Figure 3 reports the volution of impedance diagrams vs. immersion time in 1_2SO_4 solution; in general, the existence of two expacitive arcs located one at the high frequency and mother at the low frequency, who attribute the first expansive arc (high -frequency) to the electrolyte solution of the second capacitive arc (low- frequency) to the armina membrane. The electrolyte solution could not be detected due to a high conductivity of the electrolytic solution.

Figure 3. EIS analysis of alumina membrane at different immersion times (black) 30 min; (red) 2 h; (green) 4 h; (blue)
24 h in 0.2 M K₂SO₄ solution at 25 °C. Anodising is carried out in a 0.3 M oxalic acid under voltage 45 V at temperature 5 °C during 4 h, 2 h for the first anodising step and 8h, 4 h for the second anodising step for specimens a and b, respectively.

Complex systems may present different relaxation times and the resulting plot is a depressed semi-circle, such as shown in Figure 4. In these cases, a non-ideal capacitor, known as a constant phase element (CPE) is considered; the CPE admittance is expressed by [8]

$$Q(\omega) = Y_0 (j\omega)^n \tag{1}$$

Where Y_0 and n are two empirical parameters ($0 \le n \le 1$).

The electrochemical behaviour of alumina membrane inside the electrolyte solution can be represented by the equivalent circuit shown in Figure 4. The experimental data for the whole range of frequency were fitted to a circuit which consists of two elements in series, namely the membrane and the electrolyte solution as shown in Figure 4: the membrane contribution is represented by a parallel (Rm Qm) circuit, while the electrolyte part is a parallel (ReCe) one. These results allow us to determine the resistance and capacitance values of the electrolyte and the membrane by means of a non-linear program [9].

Figure 4. Circuit equivalent of alumina membrane.

We are particularly interested in low-frequency resistance corresponding to the intersection with the real axis at low-frequency. Comparison of low-frequency resistance can be estimated qualitatively which system is more resistant over time. The variations of resistance (Rm) deducted from the Nyquist diagrams for the two specimens are gathered in the Figure 5:

The values of resistance (Rm) have a primary interest in this comparative study because more the value of (Rm), better the alumina membrane is, more resistant to hydration (Al (OH)₃), (ageing). However, the membrane resistance values are strongly dependent on the insertion and penetration of K₂SO₄ solution inside the pores, which is mainly attributed to the effect of the electrolyte taken up by the membrane [10].

From Figure 5, it can be seen that the resistance of alumina membrane (Rm) obviously decreases with immersion time. In initial stage, then Rm value strongly decreases with immersion time. This behaviour indicates that the alumina membrane become more resistant in initia stage and better in the case of specimen a.

The interpretation of the Rm resistance y nation according to time can be explained by: At the beginning of immersion, the K₂SO₄ solution has not yet reached all area of wall of the pore; it is still constituted of al mina, more or less contaminated by the electrolyte anothing anions. Of this fact the progress of the K_2SO_4 colution through the this fact the progress of the K_2SO_4 colution through the pores up to the all of the well pre- has the effect of decreasing rapidly Rm by hydridic of this membrane. The progressive formation of hydridio products (Al (OH) ₃) in the shape of the gel leads acrow decreasing of Rm then stabilization of this last open a minimal value. According to Pourbaix [11], the hydroxide-like gel will evaluate to a final state which is mythergilite $Al_2O_3.3H_2O$, crystallizing in em. This evolution of the aluminium the monoclinic hydroxide is as ageing.

CONCLUSIONS IV.

Thin film alumina membranes can be used as template for ionic conductor membrane allowing fabricating different assemblies to be used in different types of fuel cell. The easy preparation of alumina membranes also in large area, their low production cost and wide range of thermal stability could make them attractive for more economically viable

fuel cell by allowing increasing the working temperature of the fuel cell and the use of less expensive catalyst.

In this study, we have addressed the preparation of alumina membranes by a double anodising approach. The alumina membranes are obtained with a random distribution of pores. The duration of anodising has an effect on the porosity and cell dimensions of alumina membrane, more duration of anodising is along more the cell membrane grows and takes large dimensions as diameter interpore distance.

Characterization by XRD allowed us to achieve results on the composition of the films prepared by each techniques

is to provide information on their strategies; alumina membranes are composed of amorphous alumina. Ageing behaviour of alumina prombrane is observed in K_2SO_4 solutions. The membrane resistance decrease with immersion time because the tradatation of the alumina immersion time because the membrane. This behavior indicates that the alumina membrane become more resistant in initial stage and better. time further increases, Rm values Then as the imm slightly deci

REFERENCES

uel cell materials and components," acta materialia, vol.51, **p**. 5981-6000.

chiavarotti, c. sunseri, u. gullo, f. di quarto and p. bocchetta, process for manufacturing a porous body," european patent application (2003) ep 1 357 626 a1 and (2004) ep 1 391 235 a2.

- p. bocchetta, c. sunseri, a. bottino, g. capannelli, g. chiavar-otti, s. piazza and f. di quarto, "asymmetric alumina membranes electrochemically formed in oxalic acid solution," journal of applied electrochemistry, vol.32 ,2002, pp. 977-985.
- [4] p. bocchetta, c. sunseri, r. masi, s. piazza and f. di quarto, "nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures," material science and engineering c23 .1021, 2003.
- [5] m. woytasik, g. julie, c. villebasse and a. jouhaneau, "matrice nanoporeuse d'alumine supporté," l'actude la centrale de technologie universitaire ief-minerve, vol. 2, numéro 1, 2008.
- [6] m.r. song, l. song, s.l. xu and z. zhang, "preparation of aluminum ultrafine particles by anodizing aluminum foil in acidic electrolyte containing chloride ions," j. electrochimica acta, vol.53, 2008, pp. 7198-7203.
- [7] s. ma, p. luo, h. zhou, c. fu, y. kuang, trans nonferrous met, soc china, vol .18, 2008, pp. 825-830.
- [8] j.r. macdonald (editor), "impedance spectroscopy emphasizing solid materials and systems," wiley-interscience, new york, 1987.
- [9] b. a. boukamp, "a package for impedance admittance data-analysis," solid state ionics, vol. 18-19, 1986, pp. 136-140.
- [10] j. benavente, j.r .ramos-barrado, m. martinez and s. bruque, impedance spectroscopy study with h-doped ammonium uranylphosphate self-supported membranes," j. appl electrochem, vol. 25, 1995, pp. 68-72.
- [11] e. deltombe and m. pourbaix, "comportement electrochimique de l'aluminium, diagramme d'equilibre tension ph du systeme al-h2o a 25 °c," cebelcor, rapport technique, cebelcor, vol. 42,1956.