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Abstract— In this work, we report the investigation of second
harmonic generation in nonlinear photonic crystals optical
waveguides. The influence of waveguide parameters is studied
and the conversion efficiency is compared to that of bulk
samples.
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I INTRODUCTION

Recently, the utilization of nonlinear photonic crystals
(NLPC) has allowed the development of new laser sources
based on nonlinear conversion of the already existing diode
laser. The interest of NLPC comes from the fact that several
quasi-phase matching (QPM) scheme are possible using
different reciprocal vectors [1].

In particular, using integrated optics can also increase the
conversion efficiency thanks to light confinement within the

efficiency in waveguide can be three times higher comp:
to the bulk 2DPPLN [2].

In this paper. we report the study of SHG i
optical waveguide. Here we are interested in the i

different parameters such as effective refr:
modal dispersion, and the overlap inte
repport the experimental results of SHG c
PPLN 2D in Bulk and waveguide. lb

II. SH

erization of

defined the nonlinear
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In reference [1], Berger
photonic crystals (NLPC)
having a quasi-
distribution of y

ve high conversion efficiency.
theory of second harmonic conversion

power can be written as:
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The conversion efﬁc1ency is then given as:
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However, in the case of pump depletion, ne}n write
(SHG power is very high): 6
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The intrinsic conversm ency
expressed in %. wem?

A. Quasi phase matchin M)
Quasx-phase g (QPM) is a technique used to
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is usually

enhance no interactions, realized to achieve the
phase matc erroelectrlcs crystals where the sign of
the nonli fficient is perlodlcally inverted at every
coherent [4]. The first experience reported on the

fabric tlo% the NLPC 2D was presented in [5] achieving a
c@on efficiency > 60%.

case of the QPM -SHG process, for a given

. : erature and incident angle, efficient SHG can only occur
waveguide. Stat-of-the-art shows that SHG convers10§ F

a single wavelength that fulfils the momentum

conservation condition:

2k lw+Kmn = k2w (4)

Where = @ are the wave vectors at the fundamental and
second harmonic frequencies, respectively.

K,,, =27/ A(m+ n) s the reciprocal lattice vector.

In reference [6], the spatial distribution of XQ) in the 2D
QPM configuration is represented in five types of periodic
two-dimensional nonlinear structures: hexagonal, square,
rectangular, centred rectangular and oblique.

Indeed, several vectors of the reciprocal lattice can
intervene to realize the phase matching, thus several phase
matching conditions can be satisfied as represented in figure
1 below.

Figure 1 The schematic geometrnical reciprocal lattice for SHG
interaction [2].
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By using the nonlinear Bragg’s law [1], we can predict
the walk-off angles of each reciprocal lattice vector (RLV)
according to the temperature.

Several studies have been presented in literature for SHG in
bulk:

QPM SHG has been demonstrated at wavelengths
ranging from 325 nm in UV [7] to 5.25 pm in mid-IR [8]. up
to 42% for CW 532-nm generation [9], 86% with ns pulses
at 768 nm [10], also there is many works in case of 2D
configuration, in [11] the presented work achieve 50% of
efficiency, in [12]the first telecommunication application of
NLPCs was demonstrated, and a orthorhombic structure
was proposed in [ 13].

III. SHG IN WAVEGUIDE

Waveguide interactions are important in some
applications because they have efficiencies of several orders
of magnitude larger than those in bulk media [14]. In optical
waveguide various modes can propagate at various phase
velocities thus, characterized by their effective indices Nm
(m: the order of the guided mode). Under these conditions, a
new degree of freedom exist using phase matching by modal
dispersion [15].

The mathematical theory of waveguide interactions is
quite similar to that for plane waves, but with an effective
area for relating the power to an effective intensity that
depends on the overlap integral of the interacting waveguide
modes [16]. The scaling of the mixing efficiency for
undepleted-pump SHG then goes as:

pSH = nnorLZPFF
Where:
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ol the effective overlap area
One of the most interesting t
¢ Gaussian beam

waveguide configuration is ¢t
diffraction problem can be ﬁ e by guided-wave
configuration. In such confi , the high optical density
power is confined, thus, in%ﬂg the interaction along the
waveguide length.
The coupled-m x tions describing the evolution of
the fundamental %\ second harmonic waves inside a
y given by:

waveguide a@
dAi% i kd Ay, (2)Ag (2) exp(iAfz)
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There are two main differences in the above equations
compared to coupled-mode equations describing the
evolution of fundamental and second harmonic waves in

bulk: Bulk material wave vector mismatch Ak is replaced
by the waveguide wave vector mismatch:

AB =B =28 ©)

m _ 9
j : eff ,m

'th‘xquency

/inside the waveguide, with ~ ¢/ e effective

refractive index of the propagating modg€.
From (7) this condition is c% ase-matching and

d
corresponds to: ¢
4o
— (n)
AB=—"(N, off ,SH ff,FF)
¢ (10)

However, N LE”) S N e due to chromatic dispersion

in most materi §@Veguides, including lithium niobate.

Therefore? me the coherence length by /. as the
length in w e power generated increase due to the
destructivyg erence between the beams generated at a

point of ¢ I:
K\
AB 4[N, g N,

o7 ] (11)

where  denotes the mode indices,
is the propagation wave vector of mode /7

The calculation of the effective area overlap in a
waveguide takes into account the EM field distribution
between the possible fundamental and SHG transversal
modes. This factor is a concept specific to waveguides. It
can be described as being a space integral of the product of
the fundamental power normalized by the distribution of the
electric field through the nonlinear area of the guide. An
important value of this integral is its high conversion
efficiency [15].

_ HH'V’SH('”)‘Z dx.dy(HHy,FF(") ’ dx.dy)’
( I \H s ’ \H},,FF(“) dedy)?  (12)

The effective overlap area must be optimised; its value
should be close to 1.

ovl

B. Phase matching by modal dispersion

An effective SHG must obey to the condition AB, =0
In multimodal waveguide, the effective indices take a value
between the refractive index of the waveguide, and the
highest refractive index of the surrounding layers. However,
it should be noted that the conversion efficiency is very
different according to the considered interaction due to the
integration overlap. It is known that interactions between
odd and even modes are highly disadvantaged. In addition,
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the losses (tunnelling losses) increase significantly with the
propagation mode number. Moreover, the modal dispersion

can cause multiple phase matching conditions. From
AB =0
B » , we get:
A
() _ ag(m) s
NeffSH Ne/j‘FF 2AP
(13)
P: entire

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Here we present preliminary experimental results of the
characterization of PPLN 2D in Bulk and waveguide

We took a sample of 2D PPLN with a square lattice and a
period of A = 6.92 um as presented in figure 2.

@&898
8%@

Figure 2. Microscopic image of a periodically polarized lithium niobate
crystal showing the inversion domains of the polarization 2D

Characterization results are presented in figures 3((a) in
Bulk, (b) in waveguide) using a pump power at 1064 nm
with repetition rate equal to 10 Hz.

Experimental results show that the RLV appear b
increasing the temperature. Figure 3 shows the RLV resu
of G10, G11 and G-11 at 80° in Bulk and 60° in wa e.

(€)

Figure 3. Far-field SHG images obs: LN 2D, (a) for the bulk
configuration an ength

CLUSION
In this paper W x) ed the study of second harmonic
generation in wa id® and Bulk 2D.

We the experimental results of the
characteri PPLN 2D in Bulk and waveguide at
differ rature.

e work, we will experimentally investigate the
influe of different parameters as effective refractive
indices, modal dispersion, and overlap integration to

generate SHG in waveguide.
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