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1. Introduction and Preliminaries 

An ideal I on a topological space (X ,τ) is a collection of subsets of X which satisfies the following properties: (i) A ∈ I and B ⊆ A 

implies B ∈ I,(ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. (X, τ, I) represents the topological space with an ideal  I. Let P(X) be the set of all 
subsets of X, a set operator ( )*: P(X) →P(X), called the local function [20] of A with respect to τ and I, is defined as follows: for A ⊆ X, 

A*(I, τ) = {x ∈ X / U ∩ A ∉ I for every open set U containing x}. We simply write A* instead of A*(I, τ) in case there is no confusion. 
X* is often a proper subset of X. For every ideal topological space (X, τ, I), there exists a topology τ*(I), finer than τ, generated by β (I, 

τ) = {U \ J: U ∈ τ and J ∈ I}. It is known in [15] that β (I, τ) is not always a topology on X. A subset A of an ideal space (X, τ, I) is 

called τ*-closed [15] or simply *-closed (resp. *-dense in itself) if A* ⊆ A (resp. A ⊆ A*). A Kuratowski closure operator cl*( ) for a 
topology τ*(I, τ), called the *-topology, is defined by cl*(A) =A ∪ A*(τ, I) [31].  M.Khan and M.Hamza [19] introduced the concept of 
Is*g-closed sets in ideal topological spaces. 

Definition: 1.1 A subset A of a topological space  is called:  

1. semi-open[21] if there exists an open set U in X such that U ⊆ A ⊆ cl(U), 

2. α-open [26] if A ⊆ Int(cl(Int(A)), 

3. g-closed [22]  if cl(A) ⊆ U whenever A ⊆ U and U is open in X,  

4. s*g-closed [2] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X,  

5. gα-closed [25] if αcl(A) ⊆ U whenever A ⊆ U and U is α-open in X, 

6. gs-closed [1] if scl(A) ⊆ U whenever A ⊆ U and U is open in  X . 

Definition 1.2.2: A set A of a bitopological space (X τ1, τ2,) is called  

1. τ1τ2-semiclosed [24] if there exists an τ1-closed set F such that τ2-int (F)⊆ A⊆ F 

2. τ1τ2-generalized closed (τ1τ2-gclosed set)[11] if τ2-cl(A)⊆ U   whenever  A⊆ U and U is τ1-open in X, 

3. τ1τ2-semi generalized closed [10] (τ1τ2-sgclosed) if τ2 -scl(A)⊆ U whenever A⊆ U and   U is τ1-semiopen in X, 
4. τ1τ2 - generalized semi closed [ 9] (τ1τ2-gs closed) if X-A is gs open, 

5. τ1τ2 -semi star generalized closed [16 ] (τ1τ2-s*g closed) if τ2-cl(A)⊆U whenever  A⊆ U and U is τ 1-semi open in X, 

6. τ1τ2-α closed [28] if τ2- cl{ τ 1-int[τ2-cl(A)]}⊆ A, 
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7. τ1τ2-g*closed[30] if τ2-cl(A)⊆ U whenever A ⊆U and U is τ1-g open, 

8. τ1τ2-g*p closed[32] if τ2-pcl(A)⊆ U whenever A ⊆U and U is τ1-g open. 

Definition 1.2.3: A bitopological space (X, τ1,τ2) is called a  

1. pairwise T1/2-space [11] if every τ1-g closed set is ,τ2-closed and every τ2-gclosed set is τ1-closed, 
2. pairwise T*1/2-space [30] if every τ1τ2-g*closed set is τ2-closed and every  τ2τ1 –g*closed set is τ1-closed, 
3. pairwise Tb-space [ 9] if every τ1τ2 -gs closed set is τ2-closed and every τ2τ1 - gs closed set is τ1-closed, 
4. pairwise T*p-space [32] if every τ1τ2 -g*p closed set is   τ2 –closed. 

Definition 1.2.4: A subset A of an ideal space (X, τ, I) is said to be Ig- closed [8] if A*⊆ U whenever A⊆ U and U is open in X. 

Theorem1.2.5: [16] The arbitrary union of s*g-closed sets Ai, i∈I in a topological space (X, τ) is s*g-closed if the family {Ai, i∈ I} is 
locally finite. 

Theorem1.2.6: [16] The arbitrary intersection of s*g-open sets Ai, i∈I  in a topological space (X, τ) is  s*g-open if the family {Ai
c, i∈I} 

is locally finite. 

The complement of a semi-open (resp, α-open, Ig-closed) set is semi-closed (resp. α-closed, Ig-open). SO(X) (resp. SC (X,x) )represents 
the collection of all semi-open sets (resp. semi-closed sets containing x) in X. 

Is*g –Closed Sets in Ideal Topological Spaces 

In  this  paper,  we  discuss  about  Is*g -closed  sets  in  ideal topological  spaces   and  some  of  their  properties. 

5.1 Is*g -Closed Sets 

Definition  5.1: A subset A of an ideal space (X, τ, I) is said to be Is*g -closed  if  A* ⊆ U  whenever A ⊆ U  and  U  is semi open in X. 
The complement of  an  Is*g -closed  set  is  said  to  be  Is*g-open. 

Remark 5.2:  Every Is*g -closed set is Ig-closed but the converse is not true in general. To see this, let X = {a, b, c, d} with τ = { φ, 

{a, b}, X} and I = { φ, {a}}. Then  A = {d} is Ig-closed set  but it is not Is*g –closed, since  A* = {c, d}  and  {a, b, d}  is  a semi  open  
set  containing  A  but  it  is not containing  A*. 

Remark 5.3:   

1. Every * -closed set is Is*g -closed but not conversely. To see this, let X = {a, b, c} with τ = { φ, {a, b}, {c}, X} and I = { 

φ, {a}, {c}, {a, c}}.Then  A = {b, c} is  Is*g –closed  but  it  is not * -closed. 
2. Every * -closed set is Ig -closed. Converse is true if   X is a T1 -space. 
3. In T1 - space, Is*g -closed sets and Ig - closed sets coincide. 

Remark 5.4:  
1. I is Is*g -closed in an ideal space (X, τ, I). 
2. A* is Is*g  -closed  for every subset  A of  (X, τ, I). 

Remark 5.5: (1) The following diagram shows the interrelation between the resulting notion of Is*g –closed sets and related concepts. 
Reverse implications do not hold. 

Diagram - I 
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Remark 5.6:  In  an  ideal  space  (X, τ, I),  Is*g - closed sets are generalization of s*g - closed sets which is itself  a  generalization of  the 

closed  set.  An   Is*g - closed set may not be s*g - closed.  To see this, let X = {a, b, c, d} with τ ={ φ,{a, b},{a, b, c},  X } and I ={ 

φ,{a}, {c},{a, c}}. Then A = {a, d} is Is*g - closed set but it is not s*g - closed. Since {a, b, d} is a semi-open set containing A but it is 

not containing cl(A). An Is*g  -closed  set  is  s*g - closed  if  I = { φ}. 

Theorem 5.7:  Let (X, τ, I) be an ideal space and A be a nonempty subset of X. Then the following statements are equivalent: 

1. A is Is*g- closed; 

2. cl*(A) ⊆  U  for every semi open set U containing A; 

3. For all  x ∈ cl*(A),  scl({x})∩A ≠ φ; 
4. cl*(A) - A contains no nonempty semi-closed set; 
5. A* - A contains no nonempty semi-closed set. 

Proof.  (1) ⇒ (2):  Let A be an Is*g - closed set. Then clearly cl*(A) ⊆ U whenever A ⊆ U and U is semi-open in X. 

 (2) ⇒ (3):  Suppose x ϵ cl*(A).  If  scl({x})∩A = φ,  then A ⊆ X – scl({x}) where  X – scl({x}) is a semi-open set.  By (2), cl*(A) ⊆ X 

– scl({x}). This contradicts the fact that x ∈ cl*(A).  Hence scl({x})∩A  ≠  φ.  This proves (3).   

   (3) ⇒(4):  Suppose F ⊆ cl*(A) – A where F ∈ SC(X, x). Since F ⊆ X – A and {x} ⊆ F. This implies scl{x} ⊆ F and 

scl({x})∩A ≠ φ.  Since x ϵ cl*(A), by (3) scl({x}) ∩A ≠ φ,  a contradiction. This proves (4). 

  (4) ⇒ (5):  Assume that F ⊆  A* – A where F ϵ SC(X) and F ≠φ. This gives F ⊆ cl*(A) – A.  This contradicts (4). 

  (5) ⇒ (1):  Let A ⊆ U   where   U ∈ SO(X) such that A* ⊄ U. This gives A* 
∩(X – U ) ≠ φ  or  A* – [X – (X – U)]  ≠ φ. This 

gives A* – U ≠φ.  Moreover, A* – U  = A*
∩(X – U ) is semi-closed in X since A* = cl(A*)  is closed in X by [9, Theorem 2.3 (c)]  and  (X 

– U) ϵ SC(X). Also A* – U ⊆ A* – A.  This gives that A* – A contains a nonempty semi-closed set.  This contradicts (5).  This completes 
the proof. 

Theorem 5.8: Let  (X, τ, I)  be  an  ideal space and  A  be  a  Is*g -closed set. Then following statements are equivalent: 

1. A is *- closed set. 
2. cl*(A) – A is  a  semi-closed set. 
3. A* – A is a semi-closed set. 

Proof.  (1) ⇒ (2):  Let A be * -closed set. Then A* – A =φ.  Now A*– A = cl*(A) – A gives cl*(A) – A =φ. This proves that cl*(A) – A   is 
semi-closed set. 

 (2) ⇒ (3):  This is trivial. 

 (3) ⇒ (1):  Let A* – A be a semi-closed set.  Now A is Is*g -closed and by Theorem 2.1 (5), A* – A contains no non empty 
semi-closed set, therefore A*– A =φ.  This proves A* ⊂ A and hence A is *- closed. 

Theorem  5.9:  In  an  ideal  space  (X, τ, I), an  Is*g -closed and * -dense set in  itself  is  s*g-closed. 

Proof.  Suppose A is * -dense in itself and Is*g -closed in X. Let U be any semi-open set containing A, then by Theorem 2.1 (2) cl*(A) ⊂ 

U. Since A is * -dense in itself, A ⊂ A*. By [19, Theorem 5] A* = cl(A*) = cl(A) = cl*(A).  We get cl (A) ⊂ U whenever A ⊂ U. This 
proves that A is s*g - closed. 

Corollary 5.10: Let A be a semi-open and Is*g -closed subset of an ideal space (X, τ, I) where I is codense in X. Then A is s*g-closed. 

Proof.  By [19, Theorem 3] A is * -dense in itself and hence by Theorem 2.3, A is s*g - closed. 

Theorem 5.11: Let (X, τ, I) be an ideal space. If A and B are subsets of X such that A ⊂ B ⊂ cl*(A) and A is Is*g -closed then B is Is*g -
closed. 

Proof. Since A is Is*g-closed set, by Theorem 2.1(5), cl*(A) – A contains no nonempty semi-closed set. Since, A ⊂ B ⊂ cl*(A) implies, 

cl*(B) – B ⊂ cl*(A) – A. So   cl*(B) – B contains no nonempty semi-closed set. By Theorem 2.1 (4),  B  is  Is*g -closed.   
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Theorem  5.12:   Let  (X, τ, I)  be  an  ideal  space  and  A ⊆ X. Then  A  is  Is*g -closed  if  and only if  A = F – N, where  F  is * -closed 
and N contains  no nonempty semi-closed  set. 

Proof.  If A is Is*g- closed set then by Theorem 2.1 (5), N = A*- A contains no nonempty semi-closed set. Let F = cl*(A), then F is *-
closed set and F – N = (A∪A*) – (A*– A) = A. 

Conversely,  let  U  be  any  semi-open  set  in  X  containing  A, then  F – N ⊆ U implies F∩(X – U) ⊆ F∩[X –(F∩N´ )] = F∩[(X – F) 
∪N] = F∩N ⊆ N.  By  hypothesis    A ⊆ F  and  F* ⊂ F as F is *- closed  gives  A*

∩(X – U) ⊂ F* ∩ (X – U) ⊂ F∩(X –U) ⊂ N,  where  

A*
∩(X –U)  is  a  semi-closed set.  By hypothesis A*

∩(X –U) = φ or A* ⊆ U implies A is Is*g - closed set. 

Lemma 5.13: [4, Lemma 2.6] If A and B are subsets of an ideal space   (X, τ, I), then (A∩B)* ⊆ A* ∩ B*. 

Theorem 5.14:  Let (X, τ, I) be an ideal space. If A is Is*g- closed and B is * -closed in X, then A∩B  is  Is*g - closed. 

Proof. Let U be a semi open set in X containing A∩B. Then A ⊆  U ∪ (X – B). Since A is Is*g - closed, therefore  A* ⊆ U ∪ (X –B) or 

B∩A* ⊆ U.  Using Lemma 2.1, (A∩B)* ⊆ A* ∩ B*⊆ A*
∩B ⊆ U because B is *-closed. This proves that A∩B is Is*g - closed. 

Theorem 5.15: Let (X, τ, I) be an ideal space and A be a nonempty subset of X. A is Is*g - open if and only if F ⊆ int*(A) whenever F ⊆ 
A and F ϵ SC(X). 

Proof.  Suppose A is Is*g- open set and F ⊆ A, where F ϵ SC(X). Then X – A ⊆ X – F.  By Theorem 5.1.7 (2), cl*(X – A) ⊆ X – F.  This 

proves F ⊆ int*(A).  

Conversely, let U be any semi open set containing X – A. Then X – U ⊆ A. By hypothesis, X – U ⊆ int*(A). This  implies  cl*(X – A ) ⊆ 
U.  By Theorem 5.1.7 (1) X – A is Is*g - closed or A is Is*g - open. 

Theorem 5.16: Let A be an Is*g -open set in an ideal space (X, τ, I) and int*(A) ⊂  B ⊂  A. Then B is Is*g - open. 

Proof. Let F be any semi closed set in X contained in B. Then F ⊆ A. Since A is Is*g - open. Therefore, by Theorem 5.1.15, F ⊆  

int*(A). But int*(A) ⊆ int*(B), implies F ⊆ int*(B).  By Theorem 5.1.15, B is Is*g - open. 

Theorem 5.17:  Let (X, τ, I) be an ideal space and A be a nonempty subset of X. Then A is Is*g- closed if and only if  A ∪ (X –A*)  is  Is*g 

-closed. 

Proof: Suppose A is Is*g- closed. Let U be a semi-open set such that A ∪ (X – A*) ⊂ U.  Then X – U ⊂ X – (A ∪ (X – A*)) = A*–A. Since 

A is Is*g - closed, by Theorem 2.1 (5), X – U = φ and hence X = U. Thus X is the only set containing A ∪ (X–A*).  This gives [A ∪ (X–

A*)]* ⊂ X. This proves A ∪ (X –A*) is Is*g - closed. 

Conversely, let F be any semi-closed set such that F ⊂ A* – A. Since A* – A = X – (A ∪ (X –A*)). This gives A ∪ (X –A*) ⊂ X – F and X 

– F is semi-open. By hypothesis, (A ∪ (X –A*))* = X –F and hence F ⊂ X –A*. Since F ⊂ A* – A it proves that F = φ  and hence A* ⊂ X – 

F ∈ SO(X).  This proves that A is Is*g - closed. 

Theorem 5.18:  Let (X, τ, I) be an ideal space and A ⊆ X. Then A ∪ (X –A*) is Is*g - closed if and only if A* – A is Is*g - open. 

Proof.  Let A ∪ (X – A*) be Is*g - closed. We show that X – (A* – A) is Is*g - closed.  Let U be a semi-open set containing X – (A* – A).  

Then X – U  ⊆ A* – A.  By Theorem 2.1 (5),  X – U = φ.  Therefore  X  is  the  only  semi-open  set  which  contains  X  –(A* – A)  and  
hence  (X –( A* – A))*  ⊆ X.  This  proves  X –( A* – A)  is Is*g- closed  or  A* – A  is  Is*g- open. 

Conversely, let A* – A be Is*g- open. Then X – (A* – A) = A ∪ X –A*) is Is*g - closed. 

Corollary 5. 19:  Let (X, τ, I) be an ideal space and A ⊆ X. Then A is Is*g - closed if and only if A* – A is Is*g - open. 

Theorem 5.20: Let (X, τ, I) be an ideal space. Then every subset of X  is Is*g - closed if and only if every semi open set is * -closed. 
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Proof.  Suppose every subset of X is Is*g - closed. Let U be a semi-open set then U is Is*g - closed and U*⊂ U. Hence U is * -closed. 

Conversely, suppose that every semi-open set is *- closed. Let A be a nonempty subset of X contained in a semi-open set U. Then A* ⊂ 

U* implies A* ⊂ U. This proves that A is Is*g - closed.   

Example 5.21: Consider R the set of all real numbers with the usual topology. If I = P(R)  then  A* = φ  for  every  subset  A  of   X  or  

A* ⊂ A. This proves that A is * -closed. 

Definition 5.22: The intersection of all semi-open subsets of a space X containing set A is known as semi kernel of A and denoted by   
s ker(A). 

Lemma 5.23: A *- dense in itself subset A of a space X is Is*g - closed if and only if A* ⊆ s ker(A). 

Proof. Assume that an Is*g - closed set A is a * -dense in itself. Then by [19, Theorem 5], A* = cl (A).But A*⊆∩{G:A ⊆ G and G ϵ 
SO(X)} = s ker (A). The converse is trivial. 

Lemma 5.24: [8, Lemma 2] every singleton {x} in a space X is either no-where dense or preopen. 

Theorem 5.25:  Arbitrary intersection of *- dense in itself, Is*g - closed sets in an ideal space (X, τ, I) is Is*g - closed. 

Proof.  Let {Aα: α ϵ L} be an arbitrary collection of * -dense, Is*g - closed sets in an ideal space (X, τ, I) and let A = ∩Aα.  Let x ϵ A*. 
In view of    Lemma 2.3, we consider the following two cases. 

Case 1:  {x} is no-where dense. If x∉A, then for some j ϵ L, we have x∉Aj. Since no-where dense subsets are semi closed [3, 

Theorem 1.3], therefore x∉ s ker(Aj). Again by Lemma 2.2.  Aj
* ⊆ s ker(Aj). Since Aj is * -dense in itself, Is*g - closed implies x ∈ A* = 

cl(A) ⊆  cl(Aj) ⊆ s ker(Aj). By contradiction   x ϵ A and hence x ϵ s ker(A). This proves that A*  ⊆ s ker(A) and hence by Lemma 2.2, A is  
Is*g - closed. 

Case 2:  {x} is pre open. Let F = int(cl({x})). Assume that x ∉ s ker(A). Then, there exist a semi closed set C containing x such that 

C∩A = φ. Now by [3, Theorem 1.2] x ϵ F = int(cl({x})) ⊆ int(cl(cl)) ⊆ C. Since F is an open set containing x and x ϵ cl(A) = A* ,  
therefore, F∩A  ≠  φ. Since F ⊆  C therefore C∩A ≠φ. A contradiction.  Hence x ϵ s ker(A). By Lemma 2.2,   A  is  Is*g - closed. 

Lemma 5.26:  Let {A:  i ϵ L} be a locally finite family of sets in an ideal space (X, τ, I). Then ∪i ϵ L Ai
*(I) = (∪i ∈ L Ai)

* (I). 

Theorem 5.27: Let (X, τ, I) be an ideal space. If {Ai:  i ϵ L} is a locally finite family of sets and each Ai is Is*g - closed in (X, τ, I). Then 
∪i ϵ L Ai is Is*g - closed. 

Proof. Let ∪i ϵ L Ai ⊆ U where U is semi open set in X. Since for each i, Ai is Is*g - closed, Ai
*  ⊆ U for each i ϵ L. Hence ∪i ∈ L Ai

*  ⊆  U. 

Using Lemma 2.4, (∪i ϵ L Ai)
* ⊆ U.  Hence ∪i ϵ L Ai is Is*g - closed. 

Theorem 5.28:  Union of two Is*g - closed set is Is*g - closed. 

Proof. Let A, B be Is*g - closed sets and W be a semi-closed set such that A ∪B  ⊆ W. This implies A* ⊆ W and B* ⊆ W. This implies A*
∪ 

B* = (A ∪ B)* ⊆ W. This proves that A∪ B is Is*g - closed set. 

Example 5.29: Let X = N and τ be the cofinite topology. Let { An : An  = {2, 3, ……, n+1}, n ϵ N}  be  a  collection  of   Is*g - closed  
sets in X. Then ∪n ϵ N An = N \ {1} = A (say) having a finite complement is open and hence semi open but not closed. As A* = cl(A) = 

N ⊄ A for I = φ, gives that A is not Is*g - closed but A* = φ⊆ A for I = P(X). In this case arbitrary union of Is*g- closed sets is Is*g - closed. 

Theorem 5.30: Every open set is Is*g - open. 

Proof. Let U be an open set. We need to show U is Is*g - open. For this we show that X – U is Is*g - closed. Let X – U  ⊂ G where G ϵ 

SO(X). Since X – U is closed. So by [9, Theorem 2.3]  (X – U )* ⊆  cl(X – U) = X – U or (X – U )* ⊆ (X – U) ⊂ G. This proves that X – 
U is Is*g - closed or U is Is*g - open. 

Definition 5.31: A space X is s*- normal, if for each pair of disjoint semi-closed sets A and B, there exist disjoint open sets U and V 

such that  A ⊂ U and  B ⊂ V. 

Theorem 5.32: Let (X, τ,I) be an ideal space where I is completely co-dense. Then the following statements are equivalent: 

1. X is s*- normal. 
2. For any disjoint semi closed sets A and B, there exist disjoint Is*g - open sets U and V containing A and B respectively. 

3. For any semi closed set A and semi open set V containing A there exists an Is*g - open set U such that A ⊂ U ⊂ cl*(U) ⊂ V. 

Proof.  (1) ⇒ (2) This proof follows from the fact that every open set is Is*g - open set. 
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   (2) ⇒ (3) Suppose A is semi-closed and V is semi-open set containing A. Since A and X –V are disjoint semi-closed sets, 

there exist disjoint Is*g - open sets U and W such that A ⊂ U and X –V ⊂ W. Since X –V is semi-closed and W is Is*g- open. By Theorem 

2.7,  X –V ⊂ int*(W) and hence X - int*(W) ⊂ V.Again  U ∩ W = φ implies  U ∩ int*(W) = φ and  hence cl*(U) ⊂ X –int(W) ⊂ V.  Thus 

U is the required Is*g- open set. This implies A ⊂ U ⊂ cl*(U) ⊂ V. 

  (3) ⇒ (1) Let A and B be two disjoint semi-closed subsets of X. By hypothesis there exists an Is*g- open set U such that A ⊂ U 
⊂ cl*(U) ⊂ X - B. Since U is Is*g - open set and A ⊂ U, by Theorem 2.7, A ⊂ int*(U). Since I is completely co-dense, by [19, Theorem 

6], τ* ⊂ τα and so int*(U) and X – cl(U) ∈ τα. Hence A ⊂ int*(U) ⊂ int (cl (int(int*(U)))) = G and B⊂ X- cl*(U) ⊂  int(cl(int(X- cl*(U)))) = 
H.  Hence, G  and  H  are  required  disjoint  open sets  containing  A  and  B  respectively. This proves (1). This completes the proof.  
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