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1. INTRODUCTION AND PRELIMINARIES 

In 1970, Levine [6] first considered the conceot of generalized closed (briefly, g-closed) sets were defined and investigated. Arya and 
Nour [2] defined generalized semi open (briefly, gs-open) sets using semi open sets. Veerakumar [11], S. Yuksel and Becern [12], A. 

Acikgoz [1] introduced  -closed set, - sets and - closed sets respectively. We introduced a new class of sets -closed 
sets and study their simple properties. 

Throughout this paper represents topological spaces on which no seperaxion axioms are 

assumed unless otherwise mentioned. For a subset A of a space denote the closure of A, 
the interior of A and the complement of A in X, respectively. 

Definition: 1.1 A subset A of a topological space  is called: 

 

The family of all preopen sets (resp. semi open sets) in X will be denoted by . A semi closure (resp. pre closure) 
of a subset A of X denoted by  is defined to be the intersection of all semi closed (resp. pre closed) sets 
containing A. A semi interior (resp. pre interior) of a subset X denoted by  is defined to the union of all 
semi open (resp. pre open) sets contained in A. 

Definition: 1.2 A subset A of a topological space  is called: 

• a generalized closed set (briefly g-closed) [6] if whenever and U is open in  

• a - closed [11] if whenever and U is g-open set in  
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• a -closed [7] if  whenever and U is open set in  

• a  -closed[2] if whenever and U is open set in  

The complements of above sets are called their respective open sets.  

Definition: 1.3 A subset A of a space  is called a -set [12] if  where U is open and  

Definition: 1.4 A subset A of a space  is called a -closed set [1] if  whenever and U is  -set in X. 

2. -Closed Set 

Definition: 2.1. A subset A of a space  is called -closed set if U⊆  whenever U⊆ and U is a -open in X. 

Definition: 2.2.  A subset A of a space  is called -closed set if U⊆  whenever U⊆ and U is a -open in 
X. 

Definition: 2.3. A subset A of a space  is called -closed set if U⊆  whenever U⊆ and U is a -open in 
X. 

Theorem: 2.4. Let  be a topological space. Then we have  

• Every closed set is a -closed set. 

• Every -closed set is a  -closed set. 

Proof: (i) Let A be a closed set in  and U be a -open set such that U⊆ .  Since A is closed, cl (A) = A, So U⊆ . 

Hence A is -closed set in   

 (ii) Let A be a -closed set in  and U⊆ where U is -open set. Since every open set is a -open set, So U is an 

open set of  Since A is a -closed set, we obtain that U⊆  hence A is a g-closed set of  

Remark: 2.5. The converse of the above theorem need not be true as seen from the following examples. 

Example: 2.6. Let  and . Then the subset  is a 
-closed set, but it is not a closed set. 

Example: 2.7. Let X ={ },, cba and { ,{ }, }.c Xτ ϕ=  Then subset }{aA = is a g-closed set, but it is not a -- closed set. 

Theorem: 2.8. Let ( X ,τ ) be a topological space. Then we have 

• Every - closed set is a  - closed set  
• Every - closed set is a   - closed set 

Proof:  (i) Assume that A  is a 
*β g*- closed set in ( X ,τ ) and A ⊆ U where U is a 

*β g- open set. We have

UAclApcl ⊆⊆ )()( . Therefore UApcl ⊆)( . Hence A  is      

 a 
*β g* p - closed set in ( X ,τ ) 

(ii) Assume that A  is a -closed set in ( X ,τ ) and A ⊆ U where U is a - open set. We have UAclAscl ⊆⊆ )()(

. Therefore UAscl ⊆)( . Hence A  is      

 a 
*β g* s - closed set in ( X ,τ ).    
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Example: 2.9. Let � � ��, �, �, �	 and
 � �∅, ��	, ��, �	, ��, �, �	, �	. Then the subset � � ��	 is a ∗�∗�-closed set, but it is 
not a ∗�∗-closed set.  
 
Example: 2.10. Let � � ��, �, �, �	 and
 � �∅, ��	, ��, �	, ��, �, �	, �	. Then the subset � � ��, �	 is a ∗�∗�-closed set, but it 
is not a ∗�∗-closed set. 

Theorem: 2.11. Let ��, 
� be a topological space. Then we have  

• Every ∗�∗�- closed set is a gp-closed set. 

• Every ∗�∗�-closed set is a gs-closed set. 

Proof: (i) Assume that A  is a	∗�∗� - closed set of ( X ,τ ). Let A ⊆ U  where U is a 
*β g- open  set. Since every open set is a 

∗�∗-open set. Since A is a ∗�∗� -closed set, Therefore UApcl ⊆)( . Hence A  is a ��-closed set of ��, 
�.    

 (ii) Assume that A  is a	∗�∗� - closed set of ( X ,τ ). Let A ⊆ U  where U is a ∗�∗- open set. Since every open set is a 

∗�∗ �open set. Since A is a ∗�∗� -closed set, Therefore UAscl ⊆)( . Hence A  is a ��-closed set of ��, 
�.    

Remark: 2.12. The converse of the above theorem need not be true as seen from the following examples. 

Example: 2.13. Let � � ��, �, �, �	 and
 � �∅, ��	, ��	, ��, �	, ��, �, �	, �	. Then the subset � � ��, �	 is a gp-closed set, but 
it is not a  ∗�∗� -closed set. 

Example: 2.14. Let � � ��, �, �, �	 and
 � �∅, ��	, ��, �	, ��, �, �	�	. Then the subset � � ��	 is a gs-closed set, but it is not a  
∗�∗� -closed set. 

Theorem: 2.15. Let ( X ,τ ) be a topological space. Then we have 

• Every ∗�∗ �closed set is a ��-closed set  

• Every  ∗�∗ �closed set is a ��-closed set 

Proof: (i) Assume that A  is a ∗�∗- closed set of ( X ,τ ). Let A ⊆ U where U is a ∗�∗- open set. Since every open set is a 

∗�∗–open, we have UApcl ⊆)( . Hence A  is a �� -closed set of  ( X ,τ ). 

 (ii) Assume that A  is a ∗�∗ �closed set of ( X ,τ ). Let A ⊆ U where U is a ∗�∗- open set. Since every open set is a ∗�∗–

open, we have UAscl ⊆)( . Hence A  is a �� -closed set of   ( X ,τ ). 

Remark: 2.16. The converse of the above theorem need not be true as seen from the following examples. 

Example: 2.17. Let � � ��, �, �, �	 and 
 � �∅, ��	, ��, �, �	, �	. Then the subset � � ��	 is a �� -closed set, but it is not a 
∗�∗-closed set. 

Example: 2.18. Let � � ��, �, �, �	 and 
 � �∅, ��	, ��, �, �	, �	. Then the subset � � ��	 is a	�� -closed set, but it is not a 
∗�∗-closed set.        

Remark: 2.19. A  *β  - Set is independent from ∗�∗-closed set as it can be seen from the next two examples. 

Example: 2.20. Let � � ��, �, �, �	 and
 � �∅, ��	, ��	, ��, �	, ��, �	, ��, �, �	, �	. Then the subset � � ��	 is a ∗-set, but it is 
not a  ∗�∗ -closed set. 

Example: 2.21. Let � � ��, �, �, �	 and
 � �∅, ��	, ��	, ��, �	, ��, �	, ��, �, �	, �	. Then the subset � � ��, �, �	 is a ∗�∗-
closed set, but it is not a  ∗ -set. 

Theorem: 2.22. If A and B are ∗�∗-closed, then � ∪ � is a ∗�∗-closed set. 
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Proof: Let A and B are ∗�∗-closed sets in X. Let U be ∗�-open set in X such that A B U∪ ⊆ . Then UA ⊆ and UB ⊆ . 

Since A and B are 
∗�-closed sets. (A)cl U⊆  and (B)cl U⊆ . Hence .)()()( UBclAclBAcl ⊆∪=∪  Therefore 

BA ∪  is ∗�∗-closed set whenever A and B are ∗�∗-closed set. 

Remark: 2.23. The finite intersection of two ∗�∗-closed sets need not be ∗�∗-closed set. 

Example: 2.24. Let � � ��, �, �, �, �	 and 
 � �∅, ��	, ��	, ��, �	, �	. Then the subset � � ��, �, �	  and ��, �, �	 are ∗�∗-
closed sets,  but ��, �, �	⋂��, �, �	 � ��, �	   is not a ∗�∗-closed set. 

Theorem: 2.25.   If ( )A B cl A⊆ ⊆  and A is a ∗�∗-closed subset of ( X ,τ ), then B is also a ∗�∗-closed subset of ( X ,τ ). 

Proof: Let U be a ∗�-open subset, such that A B U⊆ ⊆ , Since A is  ∗�∗-closed subset of ( X ,τ ). ,)( UAcl ⊆  by 

hypothesis ( )A B cl A⊆ ⊆ , (A) cl(B)cl = . Hence (B) Ucl ⊆  whenever B U⊆ , Therefore B is ∗�∗-closed subset of (

X ,τ ). 

Theorem: 2.26. For any topological space ( X ,τ ), every singleton ��	 of � is a ∗�-open set. 

Proof: Let � ∈ �. Let ��	 ∈ 
, then ��		is a ∗�-open set. If ��	∉
, then ������	� � ∅ � � !������	�", so ��	 is a ∗�-open 
set. 

Theorem: 2.27. A subset A of X is  ∗�∗-closed set in X if and only if (A) Acl − Contains no nonempty  ∗�-closed set in X. 

Proof: Suppose that F is a nonempty ∗�-closed subset of (A) Acl − . Now (A) AF cl⊆ − . (A) A
cF cl⊆ ∩ .  Therefore 

(A)F cl⊆  and A
cF ⊆ . Since 

cF is ∗�-open such that cA F⊆ and A is ∗�∗-closed, ( )
c

cl A F⊆ , ie ( )
c

F cl A⊆ . 

Hence ( ) [cl(A)]
cF cl A φ⊆ ∩ = . Ie, F φ= . Thus (A) Acl − contains no nonempty ∗�∗-closed set. 

Conversely, Assume that (A) Acl − contains no nonempty ∗�-closed set. Let A U⊆ , U  is ∗�-open. Suppose that (A)cl  is 

not contained in U. Then (A) U
c

cl ∩ is a nonempty ∗�-closed set and contained (A) Acl − which is contradiction. Therefore 

(A) Ucl ⊆  and hence A is ∗�-closed set. 
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