
 International Conference on Information Engineering, Management and Security [ICIEMS] 199

Cite this article as: Karthikeyan C, Dr. Rangachar. “Optimization of the critical loop in Renormalization

CABAC decoder.” International Conference on Information Engineering, Management and Security

(2015): 199-203. Print.

International Conference on Information Engineering, Management and Security
2015 [ICIEMS 2015]

ISBN 978-81-929742-7-9 VOL 01

Website www.iciems.in eMail iciems@asdf.res.in

Received 10 - July - 2015 Accepted 31- July - 2015

Article ID ICIEMS033 eAID ICIEMS.2015.033

Optimization of the critical loop in Renormalization
CABAC decoder

Karthikeyan.C1, Dr.Rangachar2

1Assistant Professor, ECE Department, MNM Jain Engg.College, Chennai
1Research scholar, Hindustan University, Chennai-603103

2Senior Professor, Dean for school of electrical science, Hindustan University, Chennai, INDIA

Abstract: Context-based adaptive binary arithmetic coding (CABAC) is needed in the present days for high speed H.264/AVC decoder. The high
speed is achieved by decoding one symbol per clock cycle using parallelism and pipelining techniques. In this paper we present an innovative hardware
implementation of the renormalization which is a part of CABAC binary arithmetic decoder. The renormalization of range and value is specified as a
sequential loop process that shifts only one bit per cycle until the range and value are renormalized. To speed up this process, a special hardware
technique is used. The hardware will take one clock cycle to shift n bit data. The proposed hardware is coded using HDL language and synthesized
using Xilinx CAD tool.

Keywords: CABAC, renormalization, H.264, AVC, MPEG2 etc

I. INTRODUCTION

For multimedia coding applications, ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group (MPEG)
jointly developed the latest video standard H.264/AVC (ITU-T Recommendation H.264:2003). Compared with existing video
coding standards this provides more than twice the compression ratio while maintaining video coding quality. The higher throughput is
due to the adoption of many new techniques, such as multiple reference frames, weighted prediction, deblocking filtering and context-
based adaptive entropy coding. There are two approaches available for context- based adaptive entropy coding namely context-based
adaptive variable length coding (CAVLC) and context-based adaptive binary arithmetic coding (CABAC). The CABAC coding achieves
better compression efficiency better than CAVLC, but it brings higher computation complexity during decoding.
The compression efficiency is up to 50% over a wide range of bit rates and video resolutions compared to previous standards (e.g.
MPEG2 or H.263). The downside is that the decoder complexity also increased; it is about four times higher [2]. Using a DSP
processor to decode a single bin, it takes 30 to 40 cycles. In order to improve the video decoding, the throughput of a video coder
using CABAC reaches almost 150 Mbin/s, which makes it difficult to implement in a programmable processor. Therefore, an efficient
hardware decoder [3] is important for low-power and real-time H.264 codec applications. The decoding process of CABAC is bit-
serial and has strong data dependency because the next bin process is depended on the previous bit decoding result. This data
dependency makes the designer to exploit parallelism during decoding is difficult. The context models [5] of the current syntax
element (SE) are closely related to the results of its neighboring macro blocks (MBs) or blocks, which leads to frequent memory
access. The researchers are addressing these issues for exploring the parallelism and optimize memory access.

This paper is prepared exclusively for International Conference on Information Engineering, Management and Security 2015 [ICIEMS] which is
published by ASDF International, Registered in London, United Kingdom. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honoured. For all other uses, contact the owner/author(s). Copyright
Holder can be reached at copy@asdf.international for distribution.

2015 © Reserved by ASDF.international

 International Conference on Information Engineering, Management and Security [ICIEMS] 200

Cite this article as: Karthikeyan C, Dr. Rangachar. “Optimization of the critical loop in Renormalization

CABAC decoder.” International Conference on Information Engineering, Management and Security

(2015): 199-203. Print.

Figure 1 shows H.264/AVC‟s basic coding structure for encoding one macro block, a sub block of a frame of the video stream. The
decoder is used inside the encoder to obtain best perceptual quality at the decoder side. To reduce block artifacts an adaptive
deblocking filter is used in the motion compensation loop. This combined with multiple reference frames and sub-pixel inter and intra
mode motion compensation gives very strong compression results.

Figure. 1. H.264/AVC macro block encoder with functional blocks and data flows.

The decoder is a central part of the encoder. In section II, we introduce the primary steps of CABAC encoding and decoding process.
In Section III, we describe the basic scheme of our CABAC decoder architecture. We present an overview of the framework of our
renormalization hardware architecture. In this section IV, we focus on the simulation and synthesize of the proposed architecture. In
Section V, we summarize the conclusions and future work.

II. CABAC ENCODER AND DECODER
In this section the basic principles of CABAC encoding and decoding process are discussed. The CABAC encoding and decoding
process consists of three elementary steps.

Figure 2 CABAC Encoder diagram

Figure 2 shows the encoding procedure of CABAC [9]. In the first step a given binary valued syntax element is uniquely mapped to a
binary sequence, called bin string by the binarizer unit. When the input itself is in binary format this initial step is bypassed. For each
element of the bin string or for each binary valued syntax element, one or two subsequent steps may follow depending on the coding
mode. In the regular coding mode, prior to the actual arithmetic coding process the given binary decision which, in the sequel,
referred to as a bin, enters the context modeling stage, where a probability model is selected such that the corresponding choice may
depend on previously encoded syntax elements or bins. After the assignment of a context model the bin value along with its associated
model is passed to the regular coding engine, where the final stage of arithmetic encoding together with a subsequent model updating

 International Conference on Information Engineering, Management and Security [ICIEMS] 201

Cite this article as: Karthikeyan C, Dr. Rangachar. “Optimization of the critical loop in Renormalization

CABAC decoder.” International Conference on Information Engineering, Management and Security

(2015): 199-203. Print.

takes place. Bypass coding mode is chosen for selected bins in order to allow a speedup of the whole encoding process by means of
simplified coding engine without the usage of an explicitly assigned model.
The CABAC encoder consists of three elementary steps: binarization, context modeling and binary arithmetic coding [4]. These
incoming data are the coefficients from the transformations in Figure 1 together with some context information. In the second step a
fitting probability model, based on the context, is selected for each binary symbol. This model drives the arithmetic coder (step three)
by providing an estimate of the probability density function (PDF) of the symbol that will be encoded. The better this estimate, the
better the compression. CABAC uses in total 399 models to model the PDFs of each syntax element such as macro block type, motion
vector data, texture data, etc. The models are kept „up to date‟ during encoding through the use of an adaptive coder [6] which
estimates the PDF based on previously coded syntax elements.
There are three major data dependencies are extracted as follows: Renormalization is dependent on range update.

 Probability transition is dependent on bin decision

 Context switching is dependent on decoded bin
These three data dependency relations lead to three recursive computation loops, which can hardly be sped up by pipelining [7],[10],
and thus largely limit the system performance. The following table I illustrates the frequency and the necessary operation to the
internal variables. If the decoded symbol is the least probable symbol (LPS), it takes more cycles to evaluate the next coding range and
coding offset required for the next symbol decoding. The coding range should always be modified and the offset should also be
decremented. To find the shift amount n, we also need to count the leading zeros of the codeword. On the contrary, the consequent
operations are much simpler when the decoded symbol is the most probable symbol
Table I Update variable after one symbol decoding

Sl.No Case MPS decoding LPS decoding Inference

1

Frequency Frequent None

 N
o

re
no

rm
al

iz
at

io

n

Range RMPS -

offset No change -

2

Frequency Rare Always

 R
en

or
m

al
iz

at
io

n
 Shift amount 1 Arbitrary

Coding range RMPS<<1 RLPS << n

Coding offset Offset<<1 (Offset-RMPS) << n

The following is the renormalization process in the arithmetic decoding engine

1. It accepts bit inputs from slice data and the variables codIRange and codIOffset.
2. After the renormalization process it outputs the updated variables codIRange and codIOffset.
3. A flowchart of the renormalization is shown in Figure 4. The current value of codIRange is first compared to 0x0100:

o If codIRange is larger than or equal to 0x0100, no renormalization is needed and the RenormD process is finished.

o Otherwise (codIRange is less than 0x0100), the renormalization loop is entered. Within this loop, the value of
codIRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using read_bits(1).

Figure 4 Flowchart of renormalization

 International Conference on Information Engineering, Management and Security [ICIEMS] 202

Cite this article as: Karthikeyan C, Dr. Rangachar. “Optimization of the critical loop in Renormalization

CABAC decoder.” International Conference on Information Engineering, Management and Security

(2015): 199-203. Print.

III HARDWARE IMPLEMENTATION OF RENORMALIZATION
Re-normalization engine based on a head-one detector The last step of the decode decision engine flow is renormalization. To keep the
precision of the whole decoding process, the refined codIOffset and codIRange have to be renormalized to ensure that the codIRange is
not less than 256. For example, if the refined codIRange is 9‟b000001010, the codIRange should be shifted five bits while the
codIOffset reads five bits from the bit stream during the renormalization process. Based on the principle of renormalization, we find
that if we locate the first appearing „1‟ inside the codIRange, we can successfully decide the number of bits of the codIRange to shift
and of the codIOffset to read. Moreover, the renormalization process is part of the critical timing path in CABAC hardware decoder
implementation.
To improve clock frequency, this path must be kept as short as possible. Thus, a parallel „head-one detector‟ re-normalization
architecture is proposed in the figure 5. Nine bits of the codIRange are split into three parts (3-bit vector), each of which determines
whether there is a „1‟ among three input bits.

Figure. 5 Re-normalization engine based on a head-one detector

IV RESULT AND DISCUSSION
The proposed architecture is coded using HDL language. We have used structural level implementation and the simulation result of
renormalization of given data is shown in the figure 6

Figure 6 simulation result of renormalization process

The above code is further synthesized using Xilinx EDA tools. The device used for synthesize is vertex 4 200k FPGA. The RTL
diagram is shown in the figure 7. The device utilization summery is shown in the table II.
Table II Device utilization summery

 International Conference on Information Engineering, Management and Security [ICIEMS] 203

Cite this article as: Karthikeyan C, Dr. Rangachar. “Optimization of the critical loop in Renormalization

CABAC decoder.” International Conference on Information Engineering, Management and Security

(2015): 199-203. Print.

Sl.No Description Utilized Available % of
utilizatio
n

1 Slices 15 89088 0%

2 4 input LUTs 26 178176 0%

3 Bounded IOBs 16 960 1%

4 Maximum combinational path delay 8.48 ns

Figure 7 RTL View of renormalization

 CONCLUSION

In this work we have presented a novel FPGA-design for renormalization engine which is present in CABAC decoder.
CABAC decoder uses leading one detector for the renormalization. We have proposed a hardware which will have one clock cycle to
find the leading one in the given bit stream. The proposed hardware is simulated and synthesized using CAD tools. The maximum
frequency of operation is 117 MHz.

REFERENCES

[1] T. Wiegand, G. J. Sullivan, and G. B. A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[2] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video coding
with H.264/AVC: tools, performance, and complexity,” IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp. 7–28,
2004.

[3] Wei Yu, Yun He, “A high performance cabac decoding architecture”, IEEE Trans. Consum. Electron., vol. 51, no. 4, pp.
1352-1359, Nov. 2005.

[4] D. Marpe, H. Schwarz, G. Bl¨attermann, G. Heising, and T. Wiegand, “Context-based adaptive binary arithmetic coding in
JVT/H.26L,” Proc. IEEE International Conference on Image Processing (ICIP‟02), vol. 2, pp. 513–516, September 2002.

[5] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic coding in the H.264/AVC video
compression standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636, July
2003.

[6] R. R. Osorio, J. D. Bruguera, “A New Architecture for fast Arithmetic Coding in H.264 Advanced Video Coder”, IEEE
Proc. Euromicro Conference on Digital System Design, pp. 298-305, Sept. 2005.

[7] Yuan, T.C., “A Novel Pipeline Architecture for H.264/AVC CABAC Decoder”, IEEE Asia Pacific Conf. on Circuit and
Systems, p.208-311, 2008

[8] Kuo, M.Y., Li, Y., Lee, C.Y., “An Area-Efficient High-Accuracy Prediction-Based CABAC Decoder Architecture for
H.264/AVC”, IEEE Int. Symp. on Circuit and Systems, p.160-163, 2011.

[9] Liao, Y.H., Li, G.L., Chang, T.S., “A highly efficient VLSI architecture for H.264/AVC level 5.1 CABAC decoder”, IEEE
Trans. Circ. Syst. Video Technol., 22(2): 272-281, 2012.

[10] Shi, B., Zheng, W., Lee, H.S., Li, D.X., Zhang, M., Pipelined Architecture Design of H.264/AVC CABAC Real-Time
Decoding. 4th IEEE Int. Conf. on Circuits and Systems for Communications, p.492-496, 2008.

