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Abstract: Current generation is witnessing data explosion most of it is unstructured and is called Big Data. This data has characterist ics of high 
volume, velocity, variety and veracity. HDFS, GFS, Ceph, Lustre, PVFS etc are used as file system for storing Big Data. MapReduce processes program 
in parallel across clusters and generates output. Spark framework improves performance by 10x when datasets are stored in hard disk and performance 
improves by 100x when data is stored in memory. This paper proposes optimization of Big Data processing using Spark framework. 
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I. INTRODUCTION 

 

Huge amount of data is being generated every second. It puts a new challenge for managing this data. Social media like Facebook 
generates about 600 TB of data every day, whereas Twitter generates about 120 TB each day and Google generates about 20 PB of data 
each day. It is evident that data is collected in an exponential rate and we have already reached Terabyte and PetaByte stage (see Figure 
1).  1PB=1024TB. 1EB=1024PB. 

 
Figure 1: Digital Universe expansion 

As per IDC [6], digital universe in 2010 was 1227 ExaBytes and by end of 2020 data would reach to 40ZB.  
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This Big Data needs to be stored in multiple machines in commodity hardware as clusters since single machine cannot store it. This is 
managed with Hadoop Framework. HDFS (Hadoop Distributed File System), GFS (Google File System), PVFS, Ceph etc is used to 
store Big Data. Default data size in HDFS is 64MB. These chunks (64MB) are stored in commodity hardware.  In hadoop MapReduce, 
the tuples generated in Map and Reduce task are stored in disk (see Figure 2). This takes time. This is improved by using apache spark 
framework. 
 

 
Figure 2: MapReduce iteration in Hadoop 

Apache Spark is an open-source cluster computing framework developed in 2009 at AMPLab at University of California. Spark can 
read from any data source (relational, NoSQL, file systems, etc) and offers unified API for batch analytics, SQL queries, machine 
learning and graph processing, real-time analysis.  

Spark is not only designed to run many more workloads, but it can do so much faster than older systems. Spark is 10 times faster than 
Hadoop MapReduce when data is read from disk and 100 times faster when data is read from memory. Spark is highly scalable. The 
largest Spark cluster has about 8,000 nodes.  

Spark improves efficiency through in memory computation, general computation graph. It has rich API in java, python, scala and 
interactive shell where programmers write less line of codes. 

II.   LITERATURE REVIEW 
Yanfeng Zhang et al. [4] paper discusses PrIter, which is the prioritized execution of iterative computations. PrIter stores intermediate 
data in memory for fast convergence or stores intermediate data in files for scaling to larger data sets. PrIter was evaluated on a local 
cluster of machines as well as on Amazon EC2 Cloud. The results show that PrIter achieves up to 50 × speedup over Hadoop for 
iterative algorithms type problems. In addition, PrIter is shown better performance for iterative computations than other distributed 
frameworks such as Spark and Piccolo 
 
Yanfeng Zhang et al. [2] paper discusses iMapReduce is a distributive framework that significantly improves the performance of 
iterative computations by (1) reducing the creation new MapReduce jobs again and again, (2) shuffling of static data gets eliminated, 
and (3) asynchronous execution of map tasks is allowed, iMapReduce prototype shows that it can achieve up to 5 times speedup in 
implementing iterative algorithms.  
 
Xu, X et al. [3] pointed that if TaskTracker could adjust to change of load as per its computing ability, results can be obtained faster.  
 
Weizhong Zhao  et al. [4] said that Parallel K-Means clustering based on MapReduce can process datasets efficiently using commodity 
hardware. 
 
Matei Zaharia et al. [5] pointed out that the resilient distributed dataset (RDD), which represents a read-only collection of objects can 
be partitioned across multiple set of machines in cluster and can be rebuilt even if a partition is lost. If a partition of an RDD is lost, the 
RDD has enough information and uses other RDDs to rebuild just that partition by using lineage information. Lineage is the sequence 
of transformations used to build the current RDD. . 
Matei Zaharia et al. [6] paper showed following results of spark: spark outperforms Hadoop by up to 20x in iterative machine learning 
and graph applications. The speedup comes from avoiding I/O and deserialization costs by storing data in memory as Java objects. 
Applications written in spark perform and scale well. In particular, spark speeds up an analytics report that was running on Hadoop by 
40x. When nodes fail, Spark shows recovery strategy by rebuilding only the lost RDD partitions. Spark can to query a 1 TB dataset 
interactively with latencies of 5–7 seconds. 
 
As per apache spark [7], spark runs much faster than hadoop which is evident from the figure below (see Figure 3) for logic regression. 

 

 Figure 3: Logic Regression in Hadoop and Spark 
 

http://dl.acm.org/author_page.cfm?id=81453629373&CFID=498863386&CFTOKEN=40610347
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III.  SPARK FRAMEWORK 

A. RDD (Resilent Distributed Dataset)  
It is an abstraction layer which is read only and represents collection of objects that can be stored in memory or disk in 
cluster. It can be rebuilt on failure. It has parallel functional transformation. RDDs support operations known as 
transformations, which create new dataset from an existing one, and actions, which after running a computation on the 
dataset return a value to the driver program. Some of the actions in spark are filter, count, union, join, sort, groupBy, 
groupByKey, pipe, cross, mapWith etc. 

 

 
Figure 4: Iteration in RDD using SPARK 

 
From Figure 4, the first map operation into RDD (1) is shown where, not all data could fit in the memory space so some 
data is passed to the hard disk. Data is first searched in the memory for the reading and also writing occurs in memory. This 
method makes system to be 100X faster than other methods that rely purely on disk storage. 
 
Spark follows lazy loading that is it doesn’t perform transformation on RDD immediately. Instead, it piles this 
transformation and forms batch which is then processed.   
 

B. SPARK STACK 

 

Figure 5: Spark Stack 
 

Spark Stack consists of four major components Spark SQL, Spark Streaming, MLib, GraphX (see Figure 5) 

  
C.  SPARK SQL 
The two useful components of Spark SQL are DataFrame and SQLContext. DataFrame provides an abstraction which can act as distributed SQL query 
engine. A DataFrame is a distributed collection of data which is organized into named columns. DataFrames can be converted to RDDs and vice versa. 
DataFrames can be created from different data sources such as: Hive tables, Existing RDDs, JSON datasets, structured data files, External databases. 
Spark SQL lets you query structured data as a distributed dataset (RDD) in Spark, with integrated APIs in Python, Scala and Java. This tight integration 
makes it easy to run SQL queries alongside complex analytic algorithms. 
 
D. SPARK STREAMING 
Spark Streaming allows one to process large data streams in real time. This helps to find fraud detection. Spark Streaming allows live streaming as well 
as post processing in batch. There is no other framework which can do both.  
The live stream is divided into small batch of x second which is then passed to spark framework and it treats this batch as RDD and 
processes it in batch (see Figure 6). 
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Figure 6: Illustration of Spark Streaming 

E. MLLIB 

 

                     Figure 7: Building blocks of MLlib 
MLOpt is declarative layer which automates hyperparameter tuning. Pipelines and MLI are API for simplifying development of 
machine learning such as distributed table, distributed matrices. MLlib is machine learning core library (see Figure 7). It consists of 
Gradient descent algorithm for optimization, K-Means algorithm for clustering, Logistic Regression for prediction, feature 
transformation etc. 

F. GRAPHX 
GraphX is the new Spark API for graph-parallel computation.  GraphX extends the Spark RDD with graph concept where properties 
are attached to each vertex and edge. GraphX exposes fundamental operators such as subgraph, joinVertices etc. GraphX has 
collection of graph algorithms which simplifes graph analytics. With one can view the same data as both graphs and collections, join 
and transform graphs with RDD efficiently. 

IV.  SPARK RUNTIME 

 

Figure 8: Spark Runtime 
See Figure 8, where Driver program launches multiple worker threads that read data blocks from a distributed file system and persists 
computed RDD partitions in memory. Developers write a driver program which can connect to a cluster of workers, as shown in 
Figure 2. The driver defines one or more RDDs and invokes actions on them. The workers can store RDD partitions in RAM. A driver 
performs two types of operations on a dataset: action and transformation. action performs computation on dataset and returns value to 
the driver; transformation creates new dataset from an existing dataset.  

V.  PROGRAMMING ILLUSTRATION 
Here illustration is shown in scala language which is functional programming language. 
This program collects all errors having DB2 written in ERROR Log. 
//RDD is created using hdfs 
val txt = spark.textFile("hdfs://scrapper/user/alltweets.txt"") 
//New RDD created by transformation which searches for ERROR 
val errors = txt.filter(line => line.contains("ERROR")) 

https://spark.apache.org/docs/latest/graphx-programming-guide.html#the-property-graph
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// Count all the errors. Action is performed 
errors.count() 
// Count errors mentioning DB2 
errors.filter(line => line.contains("DB2")).count() 
// Fetch the DB2errors as an array of strings 
errors.filter(line => line.contains("DB2")).collect() 
 
Another example for storing data in RAM  using cache() method . It is illustrated below 
 
step1  
Go to the bin dir of spark installation 
$ /home/spark-1.2.1//bin 
step2 
$ run the spark-shell which takes to scala prompt 
./spark-shell 
 
step3 
Create RDD of TEST.txt 
scala>val  tf=sc.textFile(“TEST.txt”) 
 
step4 
Use transformation on RDD and creat new RDD 
scala>val  ramtxt=tf.filter(line=>line.contains(“Data”) 
 
step5 
Store this RDD in RAM for faster access 
scala>ramtxt.cache() 

CONCLUSION 
Spark framework supports big data processing. This framework can give faster result than existing hadoop system. It has capability of 
doing in-memory computation using languages scala, java, python. One can work with cluster writing less lines of code in scala as it is 
functional programming language. Spark has rich set of libraries for data streaming, machine learning and spark sql. Spark framework 
improves performance by 10x when datasets are stored in hard disk and performance improves by 100x when data is on memory. 
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