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Abstract: The log-likelihood ratio test on a single check node within the LDPC decoder is monitored to develop a stopping criterion for the decoder 
that is better than previous stopping criteria, without sacrificing the BER performance. Simulation results are presented for the transmission of the rate 
1
2  (288, 576) WiMAX 802.16e LDPC code digits using binary phase shift keying (BPSK) over an AWGN channel. 
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INTRODUCTION 
 

The decoder for a Low density parity check (LDPC) code or Galleger code [1] will iterate until either a valid codeword has been found or 

the predefined maximum number of iterations Lmax  has been reached before stopping. For latency critical applications, the 

disadvantage is that an LDPC decoder requires many more iterations than a turbo decoder [2], [3], [4], [5]. At low signal-to-noise ratios 

(SNRs), Lmax  is much larger than the average number of iterations L  required establishing a valid code word under high SNRs. If it 

could be established that further decoder iterations are unlikely to yield a valid code word, then the decoding latency can be reduced 

under low SNRs by stopping the decoder early, before Lmax  iterations. In this paper, a new stopping criterion is presented that out 

performs the well-known stopping criteria [6], [7], [8] with the added advantage of a much lower implementation complexity. 
 

BACKGROUND 
 

We shall review the iterative log-likelihood decoding algorithm for binary LDPC codes to establish the notation that will simplify the 

explanation of the stopping algorithm. Let H  represent the LDPC parity check matrix of size M × N( ) , which can be viewed as a 

Tanner graph [1] with N bit nodes and M check nodes. Let 
 

 

 

of N ×1( )  size represent the transmitted code word and let 
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represent the corresponding received noisy word, where N  is the length of the code word. If after l  iterations, the LDPC decoder 

outputs a valid code word c
⌢(l )

, then the syndrome s  is given by 
 

s = Hc
⌢(l )

= 0  

where the M  syndrome bits within s  correspond to the M  check nodes. Using binary phase shift keying (BPSK) to transmit the 

LDPC code digits over an additive white gaussian noise (AWGN) channel with a single-sided noise power spectral density No  W/Hz, 

the BPSK signal points will have the amplitudes r
n

= ± E
b
R + n

n
,  where Eb  is the energy per binary digit, R = 1− M

N
 is the 

code rate and nn  is a zero mean Gaussian random variable with variance σ =
N

o

2
. Let Nm  for m = 0,1,..., M −1  represent 

the set of non-zero binary digits on the m
th  row of H.  Furthermore, let Nm,n

 for n = 0,1,..., N −1 represent the set of non-

zero binary digits on the m
th  row of H  excluding n

th  column or equivalently, the bit nodes connected to the m
th  check node, 

except the n
th  bit node on a Tanner graph.  Finally, let Z

n
 for n = 0,1,..., N −1 represent the set of non-zero binary digits on 

the n
th  column of H  or equivalently, the check nodes corrected to n

th  bit node.  Let  λn

[ l ]  denote the log-likelihood ratio (LLR) 

 

λ cn | r( ) = loge

P cn = 1| r( )
P cn = 0 | r( )

 

 

after the l
th  iteration, where  so that 

 

 

 

where Lcrn  is the intrinsic information [9] in which the channel reliability 

 

Lc = 2
EbR

σ 2
 

 

and ηm, n

[ l ]
 is the extrinsic information on cn  according to the m

th  check node on the l
th  iteration of the decoder given by 

 

ηm, n

[l ] = −2tanh−1

j∈Nm, n

∏ tanh −
λ j

[ l−1] −ηm, j

[l−1]( )
2
























.  

 
The decoding algorithm steps are as follows: 
 

S0 Initialization: Set ηm, n

[0] = 0  for all m, n( )  with H (m, n) =1 

S1 Set λn

[1] = Lcrn
 

S2 Set the maximum number of decoder iterations Lmax  

S3 For each m, n( )  with H (m, n) = 1,  compute ηm,n

[l ]
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S4 For  compute  

S5 If λn

[l ] > 0,  set c
⌢

n = 1,  otherwise set c
⌢

n = 0  

S6 If Hc
⌢(l )

= 0,  stop decoding, otherwise if l < Lmax,  go to S3, otherwise stop decoding. 

 
 The stopping criterion to be presented in the next section will replace step S6 and add a few more steps. 

 

STOPPING CRITERIA FOR LDPC CODES 
 

Typically, l  will reach Lmax
 iterations because the extrinsic information 

m∈Mn

∑ηm,n

[ l ]
  oscillates after an initial increase due to a few 

λn

[ l ]  values distributed throughout c
⌢

n  that provide overwhelming incorrect evidence in favor of either c
⌢

n = 1 or 0.  As in [8], we 

shall categorize the decoding behavior in terms of λn

[ l ]  as either convergence, stuck or oscillation.  In convergence, the average magnitude 

of the LLRs λ [l ] = 1
N

n=0

N −1

∑ λn

[l ]
 increases with each iteration and a valid code word is eventually found.  In the stuck case, λ [l ]

 is 

stuck on a particular value after a certain number of iterations and a valid code word is not found. Finally in oscillation, λ [l ]
 

oscillates after an initial increase.  Although rare, the decoding behavior can change from oscillation to convergence.  This behavior is 

referred to as slow convergence [8].  In [6], the stopping criterion is based on monitoring the variable node reliability VNR
(l)  defined by 

VNR(l ) =
n=0

N −1

∑ λn

[l ] ,  which is simply λ [ l ]
N.    At each iteration, the decoder monitors the variation of VNR

(l)  in relation to a 

threshold VNRoff = 4N
Eb

No
( )

WR
,  where 

Eb

No
( )

WR
 is the signal-to-noise ratio (SNR) point near the waterfall region in the bit-error 

rate (BER) curve for the LDPC code, using the following steps: S1 If VNR
(l ) ≤ VNR

(l−1)  for l > 1,  stop decoding; S2  If 

VNR
(l) > VNRoff ,  S1 is switched off and further iterations allowed. Thus, if VNR

(l)  does not change or is less than the previous 

value, then further iterations are stopped because the stuck or oscillation conditions are assumed to be true.  Slow convergence is 

assumed if VNR
(l) ≥ VNRoff  at which point the decoder is allowed to iterate until a valid code word is found or l = Lmax.     

 

A similar method was adopted by Li et. al. [7] in which the average LLR magnitude  λ [l] = VNR
( l )

N = 1
N

n=0

N −1

∑ λn

[ l]   is computed at the 

end of each iteration and utilized as follows: S1 Initialize a counter to zero, set thresholds J  and P.   Note the symbol  λ   in [7] has 

been replaced here by J  to avoid confusing it with the LLR symbol λn

[ l ]  ; S2 If  VNR(l )

N − VNR(l−1)

N < J VNR( l−1)

N
 , increase the 

counter by one.  Otherwise reset the counter to zero; S3 If counter reaches P  or l = Lmax,  stop decoding. Otherwise proceed to 

the next iteration.   Notice the slight clever modification in comparison to [6], which monitors a factor J  increase over the previous 

value λ [l−1]
 over P  iterations.  It turns out that the optimum value for P  is 2 for any LDPC code [7].   

 
Shin et. al. [8] proposed a stopping criterion which outperforms the method in [6], but unfortunately, there was no mention of the Li 

et. al. method [7].  The algorithm is based on the number of satisfied parity-check constraints N spc

(l )
 given by 

N spc

(l) = M −1T
Hc
⌢(l)

= M − ∑
i=0

M−1

si,  where 1
T

 is the all-one column vector of length M.  If a valid code word is found, then 

the syndrome s = Hc
⌢(l )

= 0,  so that ∑
i=0

M −1

si = 0,  and Nspc

(l ) = M.   Thus, N spc

(l )
 is simply algebraically adding up all the non-

zero syndrome bits and taking the total away from the syndrome length M .  The stopping criterion employed is to monitor the 

oscillation of the variable N spc

(l )
 using three thresholds θd,  θmax  and θspc

 and a counter cd  as follows:  S0 If  l = 1,  initialize 
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c
d

= 0;   S1 Wait for the test  Hc
⌢(l )

= s;   S2 Compute N spc

(l ) = M − ∑
i=0

M −1

si;   S3 If l > 1,  compute dspc

(l ) = Nspc

(l ) − N spc

(l−1)
.    

Otherwise go to S1; S4 If dspc

(l ) ≤ θd,  increase c
d

 by 1 (c
d

← c
d

+1).    Otherwise reset  c
d

= 0  and go to S1; S5 If 

c
d

< θmax
, go to S1;  S6 If  N spc

(l ) ≤ θ spc,   stop decoding.  Otherwise reset c
d

= 0  and go to S1, where c
d

 counts how long the 

small increment successively persist.  If  cd   ≥   θmax , further decoder iterations are stopped if N spc

(l ) ≤ θspc.    If N spc

(l ) > θ spc,  

slow convergence is assumed and further iterations are allowed.  Clearly this algorithm is monitoring the level of oscillation of Nspc

(l )
.    

If the oscillations are small and prolonged, further decoder iterations are stopped if the current Nspc

(l )
 is not sufficiently large enough (

N spc

(l ) ≤ θspc
) to indicate the possibility of slow convergence.  The disadvantage is that three thresholds θd,  θmax  and θspc

 have to 

be optimized for a given LDPC code.  More recently in [10], based once again on Nspc

(l )
,   a counter was used to only accumulate the 

evidence in favor of iterating the received noisy word towards a valid code word to slightly outperform the Shin et. al. criterion. 
 

PROPOSED STOPPING CRITERION 
 

Gallager [1] proved that for a sequence of K  independent binary digits a
i
,   with a probability p

i
 for a

i
= 1,  the probability that 

the whole sequence contains an even number of binary digits 1's is given by 1
2 + 1

2

i=0

K−1

∏ 1− 2 pi( )








.  Thus, if we let Nm,n

∗
 

represent the bit nodes connected to the m
th  check node, including the n

th  bit node, then to a good approximation the probability 

P(sm = 0 | r) for the m
th  check node syndrome is given by 

 

 

 
where 

P c
n

= 1 | r( ) =
e

λn
[ l ]

1+ e
λn

[ l ]  

 

because the Nm, n

∗
 bit nodes are sparsely separated.  For a given SNR, if the decoder iterations will eventually lead to a valid code 

word, then P(sm = 0 | r)  will gradually increase towards the value 1.  To monitor this feature, we shall use the LLR ratio 

 

Λ = loge

P sm = 0 | r( )
1− P sm = 0 | r( )








  

 

which will increase to a large value as P(sm = 0 | r)  increases towards 1.  If the decoder is unable to establish a valid code word, 

then Λ  will be close to zero.  To minimize complexity, we shall use only the single M
th

 check node to develop a stopping criterion 

as follows.  After the first Lmin
 iterations, if Λ =    loge

P sM −1=0|r( )
1−P sM−1=0|r( )( )  has reduced in comparison to its previous value, then on 

the next iteration, stop the decoder if the magnitude of the change is less than a step-threshold T.    If this change is larger than T,   
whether it be positive or negative, this would be a good indication that the iteration process is still beneficial and the decoder should be 

allowed to continue iterating.  Further decoder iterations are stopped if the maximum number Lmax
 or until a valid code word has 

been found, whichever comes first.  Let Λ[l ]
 represent the current value of loge

P sM −1=0|r( )
1−P sM−1=0|r( )( )  and Λ[ l−1]

 represent its previous 

value. Let Lmin
 represent the minimum of the decoder iterations before the stopping criterion is activated.  In addition to the 

initialization step S0 of the decoding algorithm, an alert-flag is set to 0 and the following steps are inserted to replace step S6 of the 
LDPC decoding algorithm presented in section II: 
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S6 If Hc
⌢(l)

= 0  stop decoding, otherwise continue to the next step 
S7 If alert-flag = 1, then execute S8, otherwise skip to S9 

S8 If Λ[l ] − Λ[l−1] < T,  then stop decoding, otherwise set alert-flag = 0 

S9 If alert-flag = 0 and Λ[ l] < Λ[l−1]( )  and l > Lmin( )  then set alert-flag = 1 

S10 If l < L
max( ),   go to S3, otherwise stop decoding. 

 

WIMAX 802.16E LDPC CODE 
 

The WiMAX 802.16e LDPC code is formed from the expansion of a model matrix Hbm   of size mb × nb( ) , where nb = 24  and 

mb = 1− R( )24,  where  R   is the code rate. The size of the parity check H  depends on the expansion factor q , with the 

codeword length N = qnb  and the number of parity checks M = qmb  . The values of q  range from 24 to 96 in increments of 4 

and therefore, the smallest code is of length 576 bits and the largest is 2304 bits. The first nb − mb( )  columns represent the 

systematic bits, with the remaining mb  columns representing the parity bits. Each entry p(i, j)  of the base matrix Hbm  is either a 

q × q( )  all zero matrix or a q × q( )  permuted identity matrix. If the entry is blank or less than zero, it is expanded into the all 

zero matrix. Otherwise the value represents the circular right shift size of the identity matrix. The base model matrix for rate 1
2  codes 

in the WiMAX 802.16e standard is shown in Fig. 1. The shift sizes listed are for the largest code length ( N = 2304). For shorter 

length rate 1
2  codes, the shift size s( f , i, j)  is scaled depending on the expansion factor q f

 as follows 

 

s( f , i, j) =
p(i, j) × q f

qmax









  

 

where x    denotes the flooring function applied to x  which gives the nearest integer to  −∞,  qmax  is the maximum expansion 

value of 96 and q f
 is one of the 19 expansion values ranging from 24 to 96. For example, the shift size of entry (4,1), which is equal 

to 61, using an expansion factor of 24 gives 
61× 24

96







, equates to 15. The resulting permutation matrix is shown in Fig. 2.  When 

circularly shifting the identity matrix to the right, the 1 that reaches the last column is brought back to the first column of the same 
row. This process continues for the total number of shifts. As the bottom row of the identity matrix has a 1 in its last column, shifting 
it 15 times would result in this 1 being placed at column 15 of that row as shown in Fig. 2. The process of determining the shift size 
and applying it to the identity matrix is repeated for all nonnegative entries in Fig 1. 
 

 
 

Fig. 1 The WiMAX 802.16e base model matrix 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Fig. 2 Permutation matrix formed by circularly right shifting the identity matrix by 15 

SIMULATION RESULTS 

Using BPSK over an AWGN to transfer the WiMAX [10], 802.16e [IEEE] rate 1
2 (288, 576) LDPC code digits, simulation results are 

presented in Figs. 3 and 4 showing the dependence of the probability of an information binary digit error Pe  and L   on the step-threshold  

T   over a range of channel SNRs (dB).   
 
 

 
 

Fig. 3 LDPC decoder performance 
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Fig. 4 Average number of iterations 

 
The proposed criterion is compared with previous criteria in these figures ensuring in each case that a given stopping criterion should 

not significantly impact Pe  for a given SNR.  The Shin-curve corresponds to θd  = 8, θmax  = 6 and θ
spc

 = 260 and the Li-curve 

corresponds to P = 2  and J = 0.01.  In [7], J = 0.001 was recommended in general, but the curve for J = 0.01 was 

selected because the corresponding L  performance is better.  Also, extensive simulations were undertaken to verify as stated in [7] 

that P = 2  is the optimum threshold for any LDPC code.  These results have not been shown for brevity. As expected, the stopping 

criteria curves merge with the Lmax = 15  (no stopping criteria) curve at high SNRs because of fast convergence.  Notice how the 

proposed stopping criterion outperforms Li and Shin et. al.'s algorithm at low SNRs using only a single check node syndrome 

probability that is calculated using only those bit nodes connected to M
th

  check node.  For  T  larger than 0.18, there is a noticeable 

increase in  Pe   that is accompanied with a further reduction in L.  Taking a closer look at the level of complexity involved, 

specifically for the WiMAX 802.16e rate  1
2 ( M = 288, N = 576 ) LDPC code, the index n  of the bit nodes ranges from 

 and m  ranges from   The set of bit nodes connected to the 288
th  check node are 

 

 

 

Given the separation of these bits nodes, the assumption that the probabilities P cn =1 | r( )  at these six nodes are independent is a 

good approximation to determine 
 

 

 
which in turn is used to calculate 
 

Λ[l ] = loge

P s287 = 0 | r( )
1− P s287 = 0 | r( )








  

 

at the l
th  iteration. 
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CONCLUSIONS 

Using the short-length WiMax 802.16e rate 1
2  (288, 576) LDPC code, it was shown that the stopping criterion proposed 

outperforms all the previous algorithms. Specifically, the average number of decoder iterations L  can be reduced below 10 at the low 
SNR of 0 dB, instead of the standard 15 required over low SNRs. This can be further improved by increasing the value of the step-

threshold T  for the penalty of a slight increase in P
e
. The stopping criterion proposed reduces the time taken to decode, with a 

lower complexity than previous methods, to create a latency efficient LDPC decoder. 
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