
Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

Critical Components Identification for Effective
Regression Testing
M. Ramalakshmi Praba, D. Jeya Mala

Assistant Professor – Dept.of MCA, KLN College of Information Technology, Madurai
Associate Professor, Dept.of Computer Applications, Thiagarajar College of Engineering, Madurai

Abstract—Regression testing is to check program correctness after it was changed. But during regression
testing, due to the stopping criteria followed by industries, some of the critical components and their
dependent components might have been missed. This leads to catastrophic failure in terms of cost, time
and human life. To address this most important and critical problem this paper proposes a novel method to
identify the critical components and prioritize them for testing based on their dependency and complexity
metrics before the software is delivered to the customer side.

Keywords: Software Testing, Regression Testing, Component based Testing, Critical component, Metrics.

1. Introduction

Testing is the one of the ways of assuring the quality of the product. According to 40-20-40 rule, software
development consumes 40% of total time for project analysis and design, 20% for programming and rest of
40% for testing [17]. Hence better testing methodology should be followed by the industries for producing
better product.

Component based system development is desired by the industries because of its flexibility, reusability,
extensibility etc., Even though the industries followed better testing methodology and produce quality
product, the customer may return back the product to the industry for feature enhancement or
modification of the existing functionality or for defect fixing. After changing the product, based on the
customer’s requirements, the product has to be tested. This type of testing which is known as regression
testing, consumes significant portion of development and maintenance costs [19]. Regression testing is an
important but expensive way to build confidence that software changes introduce no new faults as software
evolves [20]. In reality, the industries skip testing some components during regression testing, in order to
manage the release schedule and cost. Now, the problem occurs if some of these skipped components are
critical components which have their impact or side effect on other components. One solution is to test
potentially risky components or critical components rigorously during regression testing prior to other
components in the system.

This paper proposes a novel method to identify the critical components being tested rigorously using
known metrics and measures. Also, the proposed regression testing method identifies the dependent
components of each changed component. Then prioritization takes place during regression testing, which
will reduce the threats related to the critical components.

2. Related Work

Jerry GAO [10, 11], proposed a model to measure the maturity levels of a component testing process.

According to McGregor [12]. All the components were classified according to three risk categories and
components falling in one category were tested at the same coverage level. But exact quantification of the
risks associated with each component is not possible using this technique and it fails to give an account of
number of most critical components that need to be tested.

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 109

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

Jeya Mala et.al. [13] Proposed a technique for optimizing the test cases to improve the efficiency of the
testing process using various coverage metrics.

Srivastava [22] suggested prioritizing test cases according to the criterion of increased APFD and proposed a
new algorithm which could be able to calculate the average number of faults found per minute by a test
case and using this value to sort the test cases in decreasing order.

Rothermel et al [23], have described several techniques for test case prioritization and empirically examined
their relative abilities to improve how quickly faults can be detected by those suites. The objective is to
detect faults as early as possible so that the debugger will not sit idle.

Mao and Lu [20] proposed a testing method; Component developers should calculate the change
information from labeled method call graph and provide it to component users via XML files. Component
users use this change information and their instrumentation records together to pick out test cases for
next-round testing.

Malishevsky et al [21] proposed cost models that would help them assess the cost-benefits of techniques.
The cost-benefits models were used for regression test selection, test suite reduction, and test case
prioritization.

Jeya Mala et.al.[24,25] Proposed the metrics for critical component identification.

The dependency based test prioritization improves the early fault detection when compared to traditional
test prioritization as well as total number of fault detection. The experiments result suggested that quality
of a system can be improved in terms of effectiveness using test prioritization.

3. Problem Formulation

A component based system consists of ‘n’ number of components and, most of the components are
dependent on each other. During regression testing, the verification and validation of a component based
system is a tricky task, because testing all the components with all possible inputs is a challenging one. The
main challenge is to identify and test the components that are critical for the overall working of the system.
Also, the testers should know about the information of the modified component to identify those
components which are dependent on the modified component. Hence, the research problem here is to find
out the dependent components of each of the modified components and locating potentially risky or highly
critical components among the dependent components and finally prioritize them during regression
testing.

In this research work, the component based system (CBS) is represented by means of a specific graphical
representation called as Component Execution Sequence Graph (CESG). This graph is a network
representation of the CBS and it consists of nodes to represent the components and edges. Figure1 is a
typical Component Execution Sequence Graph G which contains five nodes, N (G) = {A, B, C, D, E} With
Edges L (G) = {i, j, k, l, m}

Figure 1. Component Execution Sequence Graph

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 110

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

A. Critical Value Calculation

The critical value for each component is calculated as the summation of a specific class of metrics. The
selection of such metrics focuses on identifying the critical components. They are classified as external
metrics and internal metrics. The external metrics shows the dependence value of the modified component
quantitatively and are derived from the dependence attributes of the components such as

1) Fanin, 2) Fanout and 2) Coupling between the Objects.

The internal metrics shows the potential complexity value of each component. The internal metrics are

1) Weighted Methods per Class (WMC), 2) Lack of Cohesion of Methods (LCOM) ,
3) Number of static methods (NSM), 4) Depth in Tree(DIT), 5) Number of static Attributes (NSA),
6) Number of Children (NSC), and 7) Method lines of code (MLOC).

Metrics and their definitions are shown in Table I.

4. Proposed Approach for Effective Regression Testing

A. Proposed Framework

The proposed framework is shown in Figure2. In this framework, the given software under test (SUT) is
analyzed and the components are extracted from it. For each component, the proposed component
prioritize module calculates the external metric values with respect to the modified component. Based on
these values, the dependent component list for each modified component is prepared.

Then the Internal metric value for each component in the dependent component list is measured. After
that the total critical value for each component is calculated as the sum of internal metric values and
external metric values. The prioritizer module then prioritizes the components based on their criticality
value and the final list will be generated for effective testing. These component lists along with their test
cases are kept in the regression test database (RTDB). This module also provides the provision for visual
representation of critical components as Component Execution Sequence Graph (CESG). From the visual
representation, the tester can easily identify the dependent components. So he can easily choose the
suitable test cases for rigorous testing.

5. Experimental Setup and Result Analysis

For identifying the critical component list, the class files are necessary for each component. To calculate the
various metrics, the Java Byte code Analysis is applied. The class files for Software under Test (SUT) are
generated by using Java compiler. This compiled format is not in the human readable format. Hence, from
the class file the Oolong file was created, in this research work. Oolong is an assembly language for the Java
Virtual Machine (JVM), it is nearly equivalent to the class file format but in the human readable form. For
each component, the Oolong instructions are analyzed and then the proposed component prioritizer
module calculates the External metric value and generates the dependent component List. The Internal
metric values and the external metric value for each dependent component are measure to identify the
critical components and they are prioritized based on that value.

A range of case studies are taken from the online project libraries such as (1000projects.org,
www.itprojectsforyou.com, www.javaworld.com) for effective regression testing. These case studies are
varied in its number of classes and Lines of codes. Each case study is analyzed and the proposed metrics
were measured. The Experiment result shows that, time taken for proposed metric calculation is very tiny,
when compare with overall time taken for testing all the components.

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 111

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

Figure2. Framework for Critical Component Prioritization

Table I: Metrics and its definition

Metrics Description Definition
Fanin
(M1)

The number of other classes
that reference a class. Fanin = number of other classes that reference a class

Fanout
(M2)

The number of other classes
referenced by a class Fanout = number of other classes referenced by a class

CBO (M3) Coupling between the objects

n m
Count cp = ∑ Ii + ∑ MINVj

i=0 j=0

Where
k

Cob = ________________
Count cp

Where k = 1 and is a proportionality constant which may be
adjusted as experimental verification [18] Mi Method I, Argm is

the Argument of method.
WMC
(M4) Weighted Methods per Class Sum of the McCabe Cyclomatic Complexity for all methods in

a class

LCOM
(M5)

Lack of Cohesion of
Methods.A measure for the

Cohesiveness of a class.

m= number of procedures (methods) in class
a= number of variables (attributes) in class

mA= number of methods that access a variable (attribute)
LCOM2 = 1 - sum(mA)/(m*a)

NSM
(M6) Number of static methods NSM= Number of static methods

DIT (M7).
Depth in Tree. Distance from
class Object in the inheritance

hierarchy.

DIT = maximum inheritance path from the class to the root
class

NSA(M8) Number of static Attributes NSA= Number of static attributes

NSC(M9) Total number
of direct subclasses of a class. NSC = number of immediate sub-classes of a class

MLOC
(M10) Method lines of code MLOC MLOC = number of non-blank and non-comment

lines inside method

 



m

i
miINV ArgMM

0
046.01

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 112

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

A. Case Study

For the first case study, ‘Vehicle Management System’ is taken. It is application software. It consists of thirty
components and 5511 lines of codes.

Figure 3. Component Execution Graph of the Vehicle Management

To calculate the proposed metrics, initially all the components are identified in the ‘Vehicle Management
System’. For all the changed components, external metrics are assessed. Then for each dependent
component the internal metrics are calculated. Each component is assigned a weight as the sum of external
and internal proposed metrics called as criticality value. The TABLE II shows the Vehicle Management
System project’s components and their corresponding criticality value. Using this value, the priority value
is assigned to each component. Then each component is tested based on this priority value which thus
helps in rigorous testing of components without missing any of the critical components. The CESG for the
Vehicle Management System shown in Figure 3.

Table II: Metric values for vehicle management System

Component Name

Fa
ni

n

Fa
no

ut

C
BO

N
SM

N
SF

N
SC

M
LO

C

D
IT

LC
O

M

W
M

C

To
ta

l

Pr
io

ri
ty

AddEntry 1 1 0.58 0 2 0 139 5 1.19 9 158.761 14
AddNewEntry 2 1 1.53 0 2 0 293 5 1.00 27 332.532 3
AddPassenger 1 1 0.58 0 0 0 194 5 0.98 14 216.555 11

AddRoute 0 1 0.00 0 2 0 223 5 1.05 26 258.045 8
Booking 3 1 0.67 0 0 0 368 5 0.89 33 411.551 1

Booking_report 0 2 0.00 0 1 0 79 5 1.15 6 94.154 22
Buses 3 1 1.43 1 2 0 171 5 0.91 12 197.343 13

Bus_Details 0 2 0.00 0 4 0 84 5 1.14 6 102.143 20
DateChooser 0 1 0.00 0 10 0 153 6 0.85 48 218.850 10

Employee 3 2 0.96 1 5 0 127 5 0.00 7 150.956 15
employee_report 0 2 0.00 0 1 0 85 5 1.00 8 102.000 21

LoginScreen 1 1 0.33 0 0 0 95 6 0.75 8 112.083 19
Main 2 0 2.00 1 0 0 4 1 0.00 3 13.000 26

MDIWindow 12 1 11.47 0 1 0 242 6 0.85 18 292.324 5
NewEntry 1 1 0.55 0 2 0 338 5 0.82 27 375.366 2
NewUser 0 1 0.00 0 0 0 111 5 0.00 11 128.000 18

Passengers 2 1 0.96 1 5 0 109 5 0.00 8 131.956 17
Payment 2 2 1.24 0 0 0 218 5 0.97 16 245.205 9

Route 2 1 0.48 1 5 0 114 5 0.00 10 138.478 16

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 113

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

Schedule 3 1 1.04 0 2 0 263 5 0.91 21 296.950 4
Scheduling_report 0 2 0.00 0 1 0 77 5 1.14 6 92.143 23

Show_Booked 0 1 0.00 1 5 0 66 5 0.00 6 84.000 25
Show_schedules 0 1 0.00 1 5 0 73 5 0.00 6 91.000 24

UpdateEntry 1 1 0.28 0 1 0 193 5 0.55 9 210.826 12
UpdatePass 1 1 0.28 0 0 0 250 5 0.88 14 272.156 7

UpdateRoute 0 1 0.00 0 1 0 242 5 0.70 25 274.700 6

In the case study, ‘Vehicle Management System’, the components Schedule, Booking, Employee, passenger,
payment are taken for modification by means of the defect injection in the components as per the Offutt’s
[9] mutant guidelines method. The components which are dependent on the modified component are
identified using the external metric value associated with the modified component. Then, the internal
metric value for each component in critical component list is calculated. Based on this value the
components are prioritized. The priority value is called as the critical value and the dependent components
are listed as critical component test based on their critical value.

a. Comparison with Existing Approaches

To analyze the efficiency of the proposed approach the existing two basic regression testing methods such
as Full Regression testing and Unit Regression testing are applied. In the Full Regression testing method all
the components in the software, are tested. In the unit regression testing method only the modified
component is tested.

During the application of each of the method, the time taken to reveal the defect is calculated. TABLE III
shows time taken by Basic Regression testing methods and the proposed regression testing method. It is
depicted in Figure 4. The following inferences have been made from the critical values.

As full Regression testing method tests all the components in the software, it takes long time to complete
the testing. Unit Regression testing method takes very little amount of time because it focuses only on the
modified component. In the proposed regression testing technique based on critical component
identification, the focus is not only on the modified component but also on the dependent component.
During the dependent components testing, the critical components are identified and they are tested with
higher priority than the other. And comparatively it takes more time than unit regression testing, and less
time than Full Regression testing. Even though the time complexity shown in TABLE III indicates the Unit
Regression testing takes less time, it is not a reliable one as the dependent components of the modified
components or the components which are being dependent by the modified components will not be
covered by it.

Figure 4. Time Comparison for different Regression Testing Methods

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 114

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

Table III: Time Taken by various Regression testing and percentage of error free
S.

N
o Defect

No.

Defect
Injected

Component

Time Taken by various Regression Testing(in Sec) and % of Error free in
terms of Requirement satisfaction in the total system

Full Regression Testing Unit Regression
Testing

Proposed Criticality
based prioritization

Approach
Time
Taken

(in
Sec)

% of
Requirement
Satisfaction

Time
Taken

(in
Sec)

% of
Requirement
Satisfaction

Time
Taken

(in
Sec)

% of
Requirement
Satisfaction

1 Defect#1 Schedule 300.23 100% 92.1 93% 155.63 100%
2 Defect#2 Booking 298.26 100% 90.3 90% 123.56 100%
3 Defect#3 Employee 315.71 100% 91.2 75% 187.89 99%
4 Defect#4 Passenger 299.65 100% 81.18 78% 145.21 100%
5 Defect#5 Payment 302.68 100% 85.3 80% 170.34 100%

This may yield negative results during its execution. Hence, based on the analysis the proposed regression
testing has been identified as a better method to yield reliable results for retesting. The above three
Regression testing methods are applied in ten different projects. For each projects, three components are
modified. For each component testing, the time taken for the Full Regression testing, Unit Regression
testing methods and Proposed Regression testing methods is noted. In all the case studies takes less time
for proposed regression testing method when compared with time taken for full regression testing method.

Conclusion and Future Work

In the proposed method, initially component’s dependency is measured and critical components are
identified. Then its criticality value is calculated for each dependent component and components are
prioritized based on the critical value. Efficiency of the above method is confirmed by ten projects. The
future work plans to provide some more dependency factors in the analysis of large systems and provide the
visualization tool that helps the testers.

Acknowledgment

This work is the part of UGC research project supported by University Grants Commission, New Delhi,
India.

References

[1] Thomas Zimmermann,, Nachiappan Nagappan,, Kim Herzig , Rahul Premraj and Laurie Williams
“An Empirical Study on the Relation between Dependency Neighborhoods and Failures”, In the
proceedings of 2011 Fourth IEEE International Conference on Software Testing, Verification and
Validation

[2] Renee C Brcyce, Sreedevi Sampath, Atif M Memon ”Developing a Single Model and Test
Prioritization Strategies for Event Driven Software” IEEE Transaction on software Engineering, Vol.
X, no X, January 2010.

[3] P. K. Suri, Sandeep Kumar ”Simulator for Identifying Critical Components for Testing in a
component Based Software System”, IJCSNS International Journal of Computer Science and
Netwok Security Vol. 10, no 6,June 2010.

[4] Katerina Goseva - Popstojanova ”Guest Editors’ Introduction to the Special Section on Evalution
and Improvement of Software Dependability” IEEE Transaction on software Engineering, Vol.36, no
3,May/June 2010.

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 115

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

Dow
nlo

ad
ed

 fro
m ed

lib
.as

df.
res

.in

[5] Mariani, L., et al, “Compatibility and Regression Testing of COTS- Component Based Software,” In
the proceedings 0f 29th IEEE conference on Software Engineering, 2007, pp. 85-95.

[6] Xiaofang Zhang; Changhai Nie; Baowen Xu; Bo Qu “Test Case Prioritization Based on Varying
Testing Requirement Priorities and Test Case Costs” In the proceedings of Seventh IEEE
Conference on Quality Software (QSIC 2007)

[7] Jasmine K. Sl Dr. R. Vasantha “Identification of software performance bottleneck components in
Reuse based software products with Application of Acquaintanceship Graphs. In proceedings of the
IEEE conference on Software Engineering Advances (ICSEA 20007)

[8] www.Projectparadise.com
[9] Jingyu Hu, Nan Li and Jeff Offutt “An Analysis of OO Mutation Operators” In the proceedings of

24th Annual International Computer Software and Application Conference, Taipei, Taiwan, Oct
2000.

[10] Zheng Li, Mark Harman, and Robert M. Hierons “Search Algorithms for Regression Test Case
Prioritization” IEEE Transaction on Software Engineering, April 2007.

[11] Gao, J., “Testing Coverage Analysis for Software Component Validation,” In the proceedings of 29th
Annual International Computer Software and Applications Conference, Edinburgh, Scotland, July
26-28, 2005.

[12] McGregor, J.D., “Component Testing,” Journal of Object Oriented programming, Vol. 10, No. 1,
1997. pp. 6-9.

[13] D. Jeyamala, V. Mohan, M. Kamalapriya, “Automated Software Test Optimization Framework - an
Artificial Bee Colony Optimization based Approach”, International Journal - IET - Software ,Vol.4,
No.5, pp.334-348, 2010

[14] OO Design Quality Metrics An Analysis of Dependencies By Robert Martin October 28,1994
[15] Programming for the Java™ Virtual Machine By Joshua Engel
[16] Ilene Burnstein, “Practical Software Testing”, Springer International Edition, Chennai, 2003.
[17] Roger S. Pressman, “Software engineering - A practitioner ’s Approach ”,McGraw-Hill International

Edition, 6th edition, 2005.
[18] A. Mitchell and J.F. Power. “Run-time cohesion metrics: An empirical investigation.” In

International Conference on Software Engineering Research and Practice, pages 532-537, Las Vegas,
Nevada, USA, June 21-24 2004.

[19] “Reduce, Reuse, Recycle, Recover: Techniques for Improved Regression Testing” Mary Jean Harrold
College of Computing Georgia Institute of Technology Atlanta, GA 30332-0280
harrold@cc.gatech.edu

[20] “Configuration aware prioritization techniques in regression testing” Xiao Qu Dept. of Comput. Sci.
& Eng., Univ. of Nebraska, Lincoln, NE. IEEE Confreence (2009)

[21] “Regression testing for component-based software systems by enhancing change information
“Chengying Mao Coll. of Comput. Sci. & Technol., Huazhong Univ. of Sci. & Technol., China
Yansheng Lu APSEC '05. 12th - Asia-Pacific Software Engineering Conference, 2005.

[22] P. R. Srivastava, “Test Case Prioritization,” Journal of Theoritical And Applied Information
Technology. JATIT 2008.

[23] Rothermel, R.H. Untch, C.Chu ,M.J.Harrol, ” Test Case Prioritization: An Emperical Study,” In
Proceedings of the24thIEEE International Conference Software Maintenance (ICSM) Oxford, U.K,
September 1999.

[24] M.Ramalakshmi Praba, Dr. D.Jeyamala, “Critical Component Analyzer - A Novel Test Prioritization
Framework for Component Based Real Time Systems” ,MySec 2011 - organized by IEEE-Malaysia
and Institute of Technology, Malaysia,IEEExplore.

[25] D.Jeyamala,Critical Components Identification and Verification for effective software Test
Prioritization,International Conference on Advanced Computing 2011 Organized by Anna
University, Chennai,IEEExplore.

ASDF Thailand Proceedings of the International Congress 2014 [IC 2014], Bangkok, Thailand 116

Int Congress 2014 ISBN : 978-81-929742-3-1 www.intcongress.com

