Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 239

Implementing Virtual Machines for Dynamic
Resource Allocation in Cloud Computing
Environment

s. prasanna laxmi

*
Assistant professor, CSE department Christu jyothi institute of technology & scie@

Yeshwanthapur, jangaon 6 .
Abstract— To scale up and down the resource usage of stake holders such, as L@mers, the
cloud computing environment is used. In this paper, we present a system t s¢¥ virtualization
technology to allocate data center resources dynamically based on appli demands, the
green computing is supported by optimizing the number of servers in } e introduce the
concept of “skewness” to measure the unevenness in the multidimensi ource utilization of a
server. By minimizing skewness, we can combine different types of wo ds nicely and improve

the overall utilization of server resources. We develop a set of hemthat prevent overload in the
system effectively while saving energy used. Trace driven QQ on and experiment results
demonstrate that our algorithm achieves good performance. 6

Index Terms—Cloud computing, resource management, @mlization, green computing.
.

1. Introd$'
There are great discussion how to move legacy apglNa®ons onto the cloud platform and here we study
how a cloud service provider best can multiplex® rtual resources onto the physical hardware. This
is important because much of the toute ins in the cloud modelcome from multiplexing. It
is observed that in many@sting data centers the servers are
underutilized due to over Q isioning for the peak demand. [1], [2]. The
cloud model is expected to mal cWDractice unnecessary by offering automatic scale up and
down in response to load riaydn. Besides reducing the hardware cost, it also saves on
electricity which contribute% significant portion of the operational expenses in large data

centers. @

Virtual machine rs (VMMs) like Xen provide a mechanism for mapping virtual
machines (VMs) ical resources [3]. This mapping islargely hidden from the cloud users.
It is up to the «érovider to make sure the underlying physical machines (PMs) have sufficient
re- sources t their needs. VM live migration technology makes it possible to change the
mapping b&\een VMs and PMs While applications are running [5], [6]. However, a policy issue
remainsq$w to decide the mapping adaptively so that the resource demands of VMs are met
while @1 mber of PMs used is minimized. This is challenging when the resource needs of VMs

o-geneous due to the diverse set of applications they run and vary with time as the
w oads grow and shrink.

We aim to achieve two goals in our algorithm:

e Avoiding overloading: The capacity of a PM should be sufficient to satisfy the resource needs
of all VMs running on it. Otherwise, the PM is overloaded and can lead to degraded
performance of its VMs.

e Green Computing: The number of PMs used should be minimized as long as they can still
satisfy the needs of all VMs. Idle PMs can be turned off to save energy.

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 240

For overload avoidance, we should keep the utilization of PMs low to reduce the possibility of
overload in case the resource needs of VMs increase later.

For green computing, we should keep the utilization of PMs reasonably high to make efficient use
of their energy.

In this paper, we present the design and implementation of an automated resource management
system that achieves a good balance between the two goals. We make the following contributions:

e We develop a resource allocation system that can avoid overload in the system eff@
while minimizing the number of servers used.

e We introduce the concept of “skewness” to measure the uneven utilization er. By
minimizing skewness, we can improve the overall utilization of server. @e face of
multidimensional resource constraints.

e Wedesign aload prediction algorithm that can capture the fut Surce usages of
applications accurately without looking inside the VMs. The algorit capture the rising
trend of resource usage patterns and help reduce the placement significantly.

The rest of the paper is organized as follows. Section-2 prov1de werview of our system and

Section-5 presents experiment results, respectively. Section- 6 es related work and Section- 7

Section -3 describes our algorithm to predict resource usage. m 4 provides simulation and
concludes. 6

VM Scheduler
e W 0, 1
H ¥
I Predictor }—-[Hotspot Solve(}—-l Coldgoe™Wer (== | M l_g_ra_no-n_L'lf!_________:
I
I ON M
N Usher CTRL
Dom 0 Dom U’ gDom Dom O .DomU:,DomU*. Dom O DomU'/Dom U
o i 1
A0 B« Y'BRERE = &[] |l
- = | = & T S| = T] T =S| = 7 i g
e NHIERE NHIEIRER
Sl = E clI=|| & 4 eee = B 2
S| = = o= = | !o S| = = o]
Ws WS Prober WS Prober
ypervisor X en Hy pervisor Xen Hypervisor

Q PM1 PM2 PMn
$ Figure. 1. System architecture.

ecture of the system is presented in Fig. 1. Each PM runs the Xen hypervisor (VMM)

upports a privileged domain o and one or more domain U [3]. Each VM in domain U

sulates one or more applications such as Web server, remote desktop, DNS, Mail, Map/
Reduce, etc. We assume all PMs Share back end storage.

The multiplexing of VMs to PMs is managed using the Usher framework [7]. The main logic of our
system is implemented as a set of plug-ins to usher. Each node runs an Usher local node
manager (LNM) on domain o which collects the usage statistics of resources for each VM on that
node. The CPU and network usage can be calculated by monitoring the scheduling events in
Xen. The memory usage with ina VM, however, is not visible to the hypervisor. One

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 241

approach is to infer memory shortage of a VM by observing its swap activities [8]. Unfortunately,
the guest OS is required to install a separate swap partition. Furthermore, it may be too late to
adjust the memory allocation by the time swapping occurs. Instead we implemented a working
set prober (WS Prober) on each hypervisor to estimate the working set sizes of VMs
running on it. We use the random page sampling technique as in the VM ware ESX Server [9].The
statistics collected at each PM are forwarded to the Usher central controller (Usher CTRL)
where our VM scheduler runs. The VM Scheduler is invoked periodically and receives from the
LNM the resource demand history of VMs, the capacity and the load history of PMs, and the
current layout of VMs on PMs. The scheduler has several components. The predictor Rre%s
the future resource demands of VMs and the future load of PMs based on past statisti®N\We
compute the load of a PM by aggregating the resource usage of its VMs. The LNM at h 4 Node
first attempts to satisfy the new demands locally by adjusting the resource allo of VMs
sharing the same VMM. Xen can change the CPU allocation among the VMs by, ting their
weights in its CPU scheduler. The MM Allotter on domain o of each nod is&sponsible for
adjusting the local memory allocation. K ¢

The hot spot solver in our VM Scheduler detects if the resource utiliz @of any PM is above
the hot threshold (i.e., a hot spot). If so, some VMs running on the be migrated away to
reduce their load. The cold spot solver checks if the average utilizatg f gctively used PMs (APMs) is
below the green computing threshold. If so, some of those PMs co tially be turned off to save
energy. It identifies the set of PMs whose utilization is below t threshold (i.e., cold spots) and
then attempts to migrate away all their VMs. It then compil gration list of VMs and passes it
to Usher CTRL for execution. @

.
3 The Skewnes s@rithm

We introduce the concept of skewness to quan e unevenness in the utilization of multiple
resources on a server. Let n be the number urces we consider rj be the utilization of the ith

resource. We define the resource skewn@a server p as
sﬁJﬁﬁhﬁﬁﬁﬁﬁiﬁiﬁﬂMﬁﬁﬁiﬁﬂfﬁﬁﬁﬁﬁﬂlﬁ

Skewness dpP % X rj2 &K

where r is the average tion of all resources for server p. In practice, not all types
of resources are pﬁ nce critical and hence we only need to consider bottleneck
resources in the abov ation. By minimizing the skewness, we can combine different types of
workloads nicely improve the overall utilization of server resources. In the following, we
describe the d& our algorithm. Analysis of the algorithm is presented in Section 1..

§Q 3.1 Hot and Cold Spots
Our a

m executes periodically to evaluate the resource allocation status based on the
e N&€d future resource demands of VMs. We define a server as a hot spot if the utilization
o of its resources is above a hot threshold. This indicates that the server is overloaded
and hence some VMs running on it should be migrated away. We define the temperature of a hot
spot p as the square sum of its resource utilization beyond the hot threshold, move onto the
next hot spot. Note that each run of the algorithm migrates away at most one VM
from the overloaded server. This does not necessarily eliminate the hot spot, but at least
reduces its temperature. If it remains a hot spot in the next decision run, the algorithm will
repeat this process. It is possible to design the algorithm so that it can migrate away multiple
VMs during each run. But this can add more load on the related servers during a period when
they are already overloaded. We decide to use this more conservative approach and leave the

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 242

system some time to react before initiating additional migrations.

3.2. Green Computing

When the resource utilization of active servers is too low, some of them can be turned off to
save energy. This is where R is the set of overloaded resources in server p and rt is the hot
threshold for resource r. (Note that only overloaded resources are considered in the calculation.)
The temperature of a hot spot reflects its degree of overload. If a server is not a hot spot, its
temperature is zero.

*
We define a server as a cold spot if the utilizations of all its resources are below a cold thr o%his
indicatesthat the server is mostly idle and a potential candidate to turn off to ergy.
However, we do so only when the average resource utilization of all actively us eJvers (ie.,
APMs) in the system is below a green computing threshold. A server is actively ediit has at least
one VM running. Otherwise, it is inactive. Finally, we define the warm thre 20 be a level of
resource utilization that is sufficiently high to justify having the server g but not so
high as to risk becoming a hot spot in the face of temporary fluctuatio %pplication resource
demands. 6»
.

Different typesof resources can have different thresh- olds.{* mple, we can define the hot
thresholds for CPU and memory resources to be 9o and 8o pe Srespectively. Thus a server is a
hot spot if eitherits CPU usage is above go percent or its me usage is above 8o percent.

3.3 Hot Spot Mitigagion

We sort the list of hot spots in the system in desce temperature (i.e.,, we handle the hottest
one first). Our goal is to eliminate all hot spots sible. Otherwise, keep their temperature as
low as possible. For each server p, we first deci ich of its VMs should be migrated away. We sort
its list of VMs based on the resulting tempegatur®of the server if that VM is migrated away. We aim
to migrate away the VM that can reduce rver’s temperature the most. In case of ties, we select
the VM whose removal can reduce t wness of the server the most. For each VM in the list, we
see if we can find a destinatio accommodate it. The server must not become a hot spot
after accepting this VM. Among h servers, we select one whose skewness can be reduced the
most by accepting this VM. e tlat this reduction can be negative which means we select the
server whose skewness inc the least. If a destination server is found, we record the migration
of the VM to that server date the predicted load of related servers. Otherwise, we move onto
the next VM in the Ii d try to find a destination server for it. As long as we can find a
destination server fftMyy of its VMs, we consider this run of the algorithm a success and then
handled in o g@ omputing algorithm. The challenge here is to reduce the number of active
servers durin oad without sacrificing performance either now or in the future. We need to
avoid oscill the system.

Our g mputing algorithm is invoked when the average utilizations of all resources on
agm ers are below the green computing threshold. We sort the list of cold spots in the system
n the ascending order of their memory size. Since we need to migrate away all its VMs before
we ¥n shut down an underutilized server, we define the memory size of a cold spot as the aggregate
memory size of all VMs running on it. Recall that our model assumes all VMs connect to share back-
end storage. Hence, the cost of a VM live migration is determined mostly by its memory footprint.
Section 7 in the supplementary file explains why the memory is a good measure in depth. We try
to eliminate the cold spot with the lowest cost first.

For a cold spot p, we check if we can migrate all its VM somewhere else. For each VM on p, we try to
find a destination server to accommodate it. The resource utilizations of the server after accepting

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 243

the VM must be below the warm threshold. While we can save energy by consolidating underutilized
servers, overdoing it may create hot spots in the future. The warm threshold is designed to
prevent that. If multiple servers satisfy the above criterion, we prefer one that is nota current cold
spot. This is because increasing load on a cold spot reduces the likelihood that it can be eliminated.
However, we will accept a cold spot as the destination server if necessary. All things being equal, we
select a destination server whose skewness can be reduced the most by accepting this VM. If we can
find destination servers for all VMs on a cold spot, we record the sequence of migrations and
update the predicted load of related servers. Otherwise, we do not migrate any of its VMs. The
list of cold spots is also updated because some of them may no longer be cold due to the pgo@d

VM migrations in the above process. \
'S
The above consolidation adds extra load onto the related servers. This is not as serio oblem

as in the hot spot mitigation case because green computing is initiated only whe ad in the
system is low. Nevertheless, we want to bound the extra load due to serve oi&lidation. We
restrict the number of cold spots that can be eliminated in each run of the fthm to be no
more than a certain percentage of active servers in the system. This is calle nsolidation limit.

Note that we eliminate cold spots in the system only when the averag%d of all active servers
(APMs) is below the green computing threshold. Otherwise, w Veo those cold spots there as
potential destination machines for future offloading. This is ¢ ’@t with our philosophy that
green computing should be conducted conservatively. K

4. Simulations Q

'S
race driven simulation. Note that our

ithm as the real implementation in the
ation results. Traces are per minute server
age, and network traffic statistics, collected using

We evaluate the performance of our algorithm
simulation uses the same code base for the a
experiments. This ensures the fidelity of our
resource utilization, such as CPU rate, mem

tools like “perfmon” (Windows), the “4proc” file system (Linux), “pmstat/vmstat/netstat”
commands (Solaris), etc.. The raw traces e-processed into “Usher” format so that the simulator
can read them. We collected the trace a variety of sources:

e Web InfoMall. Thelarg e&&ﬂine Webarchive in China (i.e., the counterpart of Internet
Archive in the US) withgpore®than three billion archived Web pages.

e Real course. The lar ine distance learning system in China with servers distributed
across 13 major ¢

e Amazing Store. %l argest P2Pstorage system in China.

We also collectgd from servers and desktop computers in our university including one of our
mail servers, tral DNS server, and desktops in our department. We post processed the

other\G ecified

@d the FUSD load prediction algorithm with " % o:2, # % o:7, and W Y 8. In a dynamic system,
thos¥ parameters represent good knobs to tune the performance of the system adaptively. We
choose the default parameter values based on empirical experience working with many Internet
applications. In the future, we plan to explore using Al or control theoretic approach to find near
optimal values automatically.

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 244

41 Effect of Thresholds on APMs

T
100

o n7wscot |
— — —ﬂ
80 1 hO.9 g0 4 ¢0.25
: - /
70 - _——
I' r— - -5 “a ‘-I
60) e L4 -

50

40

30 cpu load

\-.‘_ .
y——-
h0.95g0.5¢c0.35 |
| 60
8 i0 12 14 16 18 20 22 0 2 4 6 8 K

Time of the day (hours) E & .

Figure 2 Impact of thresholds on the number of APM

20F —

Hand of Apms

10 memory loar netwark loads

We first evaluate the effect of the various thresholds used in our algorit@'We simulate a system

with 100 PMs and 1,000 VMs (selected randomly from the trace). W- mndom to PM mapping in
the initial layout. The scheduler is invoked once per minute. T Y om part of Fig. 2 shows the
daily load variation in the system. The x- axis is the time of t starting at 8 am. The y-axis is
overloaded with two meanings: the percentage of the load percentage of APMs (i.e., Active
PMs) in the system. Recall that a PM is active (i.e., an APM) as at least one VM running. As can
be seen from the figure, the CPU load demonstrates djgaNnad patterns which decrease substantially
after midnight. The memory consumption is fairly over the time. The network utilization

stays very low.

The top part of Fig. 2 shows how the per es of APMs vary with the load for different
thresholds in our algorithm. For exargmle, “ho.7 go.3 co.l” means that the hot, the green
computing, and the cold thresholds ar 0, and 10 percent, respectively. Our algorithm can be
made more or less aggressive in its ion decision by tuning the thresholds. The figure shows

that lower hot thresholds cause % ressive migrations to mitigate hot spots in the system and
increases the number of APMs, higher cold and green computing thresholds cause more
aggressive consolidation whi ads to a smaller number of APMs. The percentage of APMs in our
algorithm follows the load closely.

To examine the pe nce of our algorithm in more extreme situations, we also create a
synthetic workload h mimics the shape of a sine function (only the positive part) and ranges
from 15 to 95 Re @ with a 20 percent random fluctuation. It has a much larger peak-to-mean
ratio than thgmeW Trace. The results are shown in Section 2 of the supplementary file, which can
be found o eComputer Society Digital Library.

4.2 Scalability of the Algorithm

2 T v v
Q —&— synthetic-total
o synthetic-hot

® synthetic—cold
1.5 | —»—trace-total
+ trace-hot
<

trace-cold

decision time (sec)

(a) average degsto® time
05

o = 3
200 400 800 8OO 1000 1200 1400
number of VMs

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 245

IS

—&— synthetic-total
0 synthetic-hat
 synthetic-cold

—w— trace-total

+ ftrace-hot

¢ trace-cold

@
tn

number of migrations
o = n
O = N W

(=)

S L3 ‘
200 400 600 800 1000 1200 1400
number of VMs

(b) average number of migrations

&
60

Figure 3. Scalability of the algorithm with system size. x@

We evaluate the scalability of our algorithm by varying the number of V W ¢he simulation
between 200 and 1,400. The ratio of VM to PM is 10:1. The results are shown irB

Fig. 3. Fig. 3a shows that the average decision time of our algorithm inc with the system size.
The speed of increase is between linear and quadratic. We break down decision time into two
parts: hot spot mitigation (marked as “hot”) and green computi Red as “cold”). We find that
hot spot mitigation contributes more to the decision time. We % that the decision time for the
synthetic workload is higher than that for the real trace due large variation in the synthetic
workload. With 140 PMs and 1,400 VMs, the decision time@ out 1.3 seconds for the synthetic

workload and 0.2 second for the real trace. E .

whole system during each decision. The
linearly with the system size. We find that

Fig. 3b shows the average number of migrations j
number of migrations is small and increases ro
hot spot contributes more to the number igrations. We also find that the number of
migrations in the synthetic workload is high®®than that in the real trace. With 140 PMs and 1,400
VMs, on average each run of our algorithpidgurs about three migrations in the whole system for the
synthetic workload and only 1.3 migragidys Yor the real trace.

4.&% ect of Load Prediction

2r—= =
—=— yithout prediction
0O with prediction

number of real hotspots

$ © 200 400 600 800 1000 1200 1400
number of VMs
(a) number of hot spots
100
—=— without prediction
O with prediction

80

40

201

260 400 600 800 1000 1200 1400
number of VMs

(b) number of APMs

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 246

x10~°

T T T T T

—=— without prediction
1.6r| o with prediction 1

121

#migrations per VM

0.4+
G2r

200 400 o600 800 100(0\\@_,' 1400

number of VMs
(c) number of migration

Figure. 4. Effect of lo@edlction

We compare the execution of our algorithm with & thout load prediction in Fig. 4. When load
prediction is disabled, the algorithm simply use ast observed load in its decision making. Fig.
4a shows that load prediction significantly re@ the average number of hot spots in the system
during a decision run. Notably, predictiog,prevVents over 46 percent hot spots in the simulation
with 1,400 VMs. This demonstrates its h&ectiveness in preventing server overload proactively.
Without prediction, the algo- rithm jsg\t0 consolidate a PM as soon as its load drops below the
threshold. With prediction, th @hm correctly foresees that the load of the PM will increase
above the threshold shortly andN takes no action. This leaves the PM in the “cold spot” state for a
while. However, it also red placement churns by avoiding unnecessary migrations due to
temporary load fluctuatio sequently, the number of migrations in the system with load
prediction is smaller t t without prediction as shown in Fig. 4c. We can adjust the
conservativeness of lo rediction by tuning its parameters, but the current configuration
largely serves our p se (i.e., error on the side of caution). The only downside of having more
cold spots in e@ m is that it may increase the number of APMs. This is investigated in Fig.
4b which sho the average numbers of APMs remain essentially the same with or without
load predic '@he difference is less than 1 percent). This is appealing because significant overload
protecti@n be achieved without sacrificing resources efficiency. Fig. 6c compares the average
numb igrations per VM in each decision with and without load prediction. It shows that each
Vv ences 17 percent fewer migrations with load prediction.

5 Experiments

Our experiments are conducted using a group of 30 Dell Power Edge blade servers with Intel
E5620 CPU and 24 GB of RAM. The servers run Xen-3.3 and Linux 2.6.18. We deploy 8 VMs on
each server at the beginning. Each VM is configured with one virtual CPU and two gigabyte
memory. Self-ballooning is enabled to allow the hypervisor to reclaim un used memory. Each VM
runs the server side of the TPC-W benchmark corresponding to various types of the workloads:
browsing, shopping, hybrid workloads, etc. Our algorithm is invoked every 10 minutes.

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 247

5.1 Algorithm Effectiveness

Number of Request per Second for Each VM

.
Relative time ‘\Q

Figure 5. #APMs varies wi PE-W load.

We evaluate the effectiveness of our algorithm ir@rload mitigation and green computing. We
start with a small scale experiment consisting PMs and five VMs so that we can present the
results for all servers in Fig. 5. Different sha used for each VM. All VMs are configured with
128 MB of RAM. An Apache server runs ogagach VM. We use httperf to invoke CPU intensive PHP
scripts on the Apache server. This allow: td subject the VMs to different degrees of CPU load by
adjusting the client request rates. T ization of other resources are kept low. We first increase
the CPU load of the three VMs c&& o create an overload. Our algorithm resolves the overload
he

by migrating VM3 to PM3. It regc stable state under high load around 420 seconds. Around 89o
seconds, we decrease the &d of all VMs gradually. Because the FUSD prediction algorithm is

conservative when the {o reases, it takes a while before green computing takes effect. Around
1,700 seconds, VM3 is d from PMj to PM; so that PM3 can be put into the standby mode.

Around 2,200 secon{& two VMs on PM; are migrated to PM2 so that PM; can be released as
well. As the loa p and down, our algorithm will repeat the above process: spread over or
consolidate the as needed.

Next we the scale of the experiment to 30 servers. We use the TPC-W benchmark for this
experi PC-W is an industry standard benchmark for e-commerce even when idle,
C several hundred megabytes of memory. After two hours, we increase the load
c@(ically to emulate a “flash crowd” event. The algorithm wakes up the stand-by servers to
offl¥d the hot spot servers. The figure shows that the number of APMs increases accord- ingly. After
the request rates peak for about one hour, we reduce the load gradually to emulate that the flash
crowd is over. This triggers green computing again to consolidate the underutilized servers. Fig. 5
shows that over the course of the experiment, the number of APM rises much faster than it falls. This
is due to the effect of our FUSD load prediction. The figure also shows that the number of APMs
remains at a slightly elevated level after the flash crowd. This is because the TPC-W servers
maintain some data in cache and hence its memory usage never goes back to its original level.

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 248

5.2 Impact of Live Migration

Normatized WIPS
S o el

=2
[N}

Session Number 6 *

Figure 6. Impact of live migration on TPC-W performance. @
One concern about the use of VM live migration is its impact on application pé€ #nce. Previous
studies have found this impact to be small [5]. We investigate this impact in own experiment.
We extract the data on the 340 live migrations in our 30 server experiment . We find that 139 of
them are for hot spot mitigation. We focus on these migrations becaus Is when the potential

corresponding TPC-W sessions undergoing live migration. All t e ~ jions run the “shopping mix”
workload with 200 emu- lated browsers. As a target for comp we rerun the session with the
same parameters but perform no migra- tion and use the resul erformance as the baseline. Fig.
6 shows the normalized Web interactions per second (for the 7 sessions. WIPS is the
performance metric used by TPC-W. The figure shows ost live migration sessions exhibit no
noticeable degradation in performance compared t asehne the normalized WIPS is close to
the only exception is session 3 whose degraded p ance is caused by an extremely busy server
in the original experiment. Next we take a clos§ at one of the sessions in Fig. 6 and show how

impact on application performance is the most. Among the 139 mlrz ?we randomly pick seven

their performances vary over time. The figu ifies that live migration causes no noticeable
performance degradation. The durationof th® migration is under 10 seconds. Recall that our
algorithm is invoked every 10 minutes.

&{Qtesource Balance

<
HEA
t@ 50 i \J\‘ PO release PM1

0

0 400 \ 800 1200 1600 2000 2400 2800

Q\O(b
$ 5 u-m WM'MWWM ‘ "

0
0 400 800 1200 1600 2000 2400 2800
Time (8)

Figure 7 Resource balance for mixed workloads

(=]

Recall that the goal of the skewness algorithm is to mix workloads with different resource
requirements together so that the overall utilization of server capacity is improved. In this
experiment, we see how our algorithm handles a mix of CPU, memory, and network intensive
workloads. We vary the CPU load as before. We inject the network load by sending the VMs a series
of network packets. The memory intensive applications are created by allocating memory on

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 249

demand. Again we start with a small scale experiment consisting of two PMs and four VMs so that we
can present the results for all servers in Fig. 7. The two rows represent the two PMs. The two
columns represent the CPU and network dimensions, respectively. The memory consumption is
kept low for this experiment. Initially, the two VMs on PM;j are CPU intensive while the two VMs on
PM, are network intensive. We increase the load of their bottleneck resources gradually. Around
500 seconds, VM, is migrated from PM, to PM; due to the network overload in PM;. Then around
600 seconds, VM; is migrated from PM; to PM5 due to the CPU overload in PM;. Now the system
reaches a stable state with a balanced resource utilization for both PMs—each with a CPU inte

VM and a network intensive VM. Later we decrease the load of all VMs gradually so that be I\@x
become cold spots. We can see that the two VMs on PM; are consolidated to PMy by en

computing.

Next we extend the scale of the experiment to a group of 72 VMs running ovep 8 ™ Half of the
VMs are CPU intensive, while the other half is memory intensive. Initially, we k edoad of all VMs
low and deploy all CPU intensive VMs on PM, and PM5 while all memory inte Ms on PMg and
PM-. Then we increase the load on all VMs gradually to make the underlyi s hot spots. Fig. 12

shows how the algorithm spreads the VMs to other PMs over time. As w@ see from the figure, the
algorithm balances the two types of VMs appropriately. The figyreglsq®hows that the load across
the set of PMs becomes well balanced as we increase the load. %

>
6 Related Work

Automatic scaling of Web applications was previousls s'g’led in [14] and [15] for data center

environments. In Muse [14], each server has replicas web applications running in the system.

The dispatch algorithm in a frontend L7-switch sSure requests are reasonably served while
minimizing the number of underutilized serv rk [15] uses network flow algorithms to
allocate the load of an application among its g instances.

6.1 Resource tion by Live VM Migration

VM live migration is a widely @-mlque for dynamic resource allocation in a virtualized
environment [8], [12], K{

Our work also belongs to thlségory. Sandpiper combines multidimensional load information
into a single Volume meg t sorts the list of PMs based on their volumes and the VMs in each PM
in their volume-to-sizefra¥y SR). This unfortunately abstracts away critical information needed
when making the ngffRd®on decision. It then considers the PMs and the Ms in the presorted order.
in Section 5 of the supplementary file, which is available online, to show
how they beha erently. In addition, their work has no support for green computing and differs
from ours in @ other aspects such as load prediction. Dynamic placement of virtual servers to
minimize olations is studied in [12]. They model it as a bin packing problem and use the well-
know -Tit approximation algorithm to calculate the VM to PM layout periodically. That
algeg , however, is designed mostly for offline use. It is likely to incur a large number of
%

ions when applied in online environment where the resource needs of VMs change
ically.

6.2 Green Computing
Many efforts have been made to curtail energy consumption in data centers. Hardware-based

approaches include novel thermal design for lower cooling power, or adopting power-
proportional and low-power hardware.

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 250

Our work belongs to the category of pure-software low- cost solutions [10], [12], [14].

7. Conclusion

We have presented the design, implementation, and evalua- tion of a resource management
system for cloud computing services. Our system multiplexes virtual to physical resources
adaptively based on the changing demand. We use the skewness metric to combine VMs with
different resource characteristics appropriately so that the capacities of servers are well utilized.

resource constraints.

Our algorithm achieves both overload avoidance and green computing for systems wit11 .@-

10.

11.

12.

13.

15.

.
References 6

M. Armbrust et al.,, “Above the Clouds: A Berkeley View of Cloud Co u&g, technical
'S

report, Univ. of California, Berkeley, Feb.2009.
L. Siegele, “Let It Rise: A Special Report on Corporate IT,” The Econ vol. 389, pp. 3-16,
Oct. 2008.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. ebauer, 1. Pratt, and A.
Warfield, “Xen and the Art of Virtualization,” Proc. ACM §, rating Systems Principles

(SOSP ’03), Oct. 2003. ¢

“Amazon elastic compute cloud (Amazon EC2),” http: amazon.com/ec2/, 2012.

C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. ach, I. Pratt, and A. Warfield,
“Live Migration of Virtual Machines,” Proc. S Networked Systems Design and

Implementation (NSDI ’o5), May 2005. .

M. Nelson, B.-H. Lim, and G. Hutchins, “Fast@parent Migration for Virtual Machines,”
Proc. USENIX Ann. Technical Conf., 2005. ®
M. McNett, D. Gupta, A. Vahdat, and oelker, “Usher: An Extensible Framework for
Managing Clusters of Virtual Machine&oa Large Installation System Administration Conf.
(LISA ’07), Nov. 2007.

T. Wood, P. Shenoy, A. Venkatar %, and M. Yousif, “Black-Box and Gray-Box Strategies for
Virtual Machine Migration,” . Symp. Networked Systems Design and Implementation

(NSDI ’o7), Apr. 2007.
C.A. Waldspurger, “Me Resource Management in VMware ESX Server,” Proc. Symp.
Operating Systems Desjdg and Implementa- tion (OSDI '02), Aug. 2002.

G. Chen, H. Wenb , S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-Aware Server
Provisioning a ojd Dispatching for Connection-Intensive Internet Services,” Proc.
USENIX Symp. rked Systems Design and Implementation (NSDI '08), Apr. 2008.

P. Padala, K€ ou, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Merchant,

“Autorga ontrol of Multiple Virtualized Resources,” Proc. ACM European conf.

Comp r@tems (EuroSys '09), 2009.

N. @ , A. Kochut, and K. Beaty, “Dynamic Placement of Virtual Machines for Managing
iJlations,” Proc. IFIP/IEEE Int’l Symp. Integrated Network Management (IM "07), 2007.

-W: Transaction Processing Performance Council,” http://www.tpc.org/tpcw/,2012.

. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and R.P.Doyle, “Managing Energy and

Server Resources in Hosting Centers,” Proc. ACM Symp. Operating System Principles (SOSP

"01), Oct. 2001

C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A Scalable Application Placement

Controller for Enterprise Data Centers,”Proc. Int'l World Wide Web Conf. (WWW ’07), May

2007.

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

