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Abstract— To scale up and down the resource usage of stake holders such as customers, the 
cloud computing environment is used. In this paper, we present a system that uses virtualization 
technology to allocate  data  center resources dynamically  based on application  demands, the 
green computing is supported by optimizing the number of servers in use.  We introduce the 
concept of “skewness” to measure the unevenness in the multidimensional resource utilization of a 
server. By minimizing skewness, we can combine different types of workloads nicely and improve 
the overall utilization of server resources. We develop a set of heuristics that prevent overload in the 
system effectively while saving energy used. Trace driven simulation and experiment results 
demonstrate that our algorithm achieves good performance.

Index Terms—Cloud computing, resource management, virtualization, green    computing.

1.  Introduction

There are great discussion how to move legacy applications onto the cloud platform and here we study 
how a cloud service provider best can multiplex its virtual resources onto the physical hardware. This 
is important because m u c h  o f  the touted gains in the cloud m o d e l come f ro m  multiplexing. I t  
i s  o b s e r v e d  t h a t  i n  m a n y  e x i s t i n g  d a t a  c e n t e r s  t h e  s e r v e r s  a r e  
u n d e r u t i l i z e d  d u e  t o  o v e r  p r o v i s i o n i n g  f o r  t h e  p e a k  d e m a n d . [1], [2]. The 
cloud model is  expected to make such practice unnecessary by offering automatic scale u p  a n d
down in response to load var ia t io n. Besides reducing the hardware cost, it also saves on 
electricity which contributes to significant portion of the operational expenses in large data 
centers. 

Virtual m a c h i n e  monitors (VMMs) like Xen provide a mechanism for mapping virtual 
machines (VMs) to physical resources [3]. This m a p p i n g  is l argely  hidden from the cloud users.   
It is up to the cloud provider to make sure the underlying physical machines (PMs) have sufficient 
re- sources to meet their needs. VM live migration technology makes it possible to change the 
mapping between VMs and PMs While applications are running [5], [6]. However, a policy issue   
remains as how to decide the mapping adaptively so that the resource demands of VMs are met 
while the number of PMs used is minimized. This is challenging when the resource needs   of VMs 
are hetero-geneous due to the diverse set of applications they run and vary with time as the 
w o r k l o a d s grow   and   shrink.

We aim to achieve two goals in our algorithm:

• Avoiding overloading: The capacity o f  a PM should be sufficient to satisfy the resource needs 
of all VMs running on it. Otherwise, the PM is overloaded and can lead to degraded 
performance of its VMs.

• Green Computing: The number of PMs used should be minimized as long as they can still 
satisfy the needs of all VMs.  Idle PMs can be turned off to save energy.
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For overload avoidance, we should keep the utilization of PMs low to reduce the possibility of 
overload in case the resource needs of VMs increase later. 

For green computing, we should keep the utilization of PMs reasonably high to make efficient use 
of their energy.

In this paper, we present the design and implementation of an automated resource management 
system that achieves a go o d  balance between the two goals.  We m a k e  the following contributions:

• We develop a resource allocation system that c a n avoid overload in the system effectively 
while minimizing the number of servers used.

• We introduce the concept of “skewness” to measure the u n e v e n  utilization of a server. By 
minimizing skewness, we can improve the overall uti l ization of servers in the face of 
multidimensional resource constraints.

• We d e s i g n  a l o a d  prediction algorithm that   can capture the future resource usages of  
applications accurately without looking inside the VMs. The algorithm can capture the rising 
t rend of resource usage patterns and help reduce the placement churn significantly.

The rest of the paper is organized as follows.  Section-2 provides an overview of our system and 
Section - 3 describes our algorithm to predict resource usage.  Section 4 provides simulation and 
Section-5 presents experiment results, respectively. Section- 6  discusses related work and Section- 7 
concludes.

2. System Overview 

Figure. 1. System architecture. 

The architecture of the system is presented in Fig. 1. Each PM runs the Xen hypervisor (VMM) 
which supports a privileged domain 0 and one or more domain U [3]. Each VM  in  domain U  
encapsulates one or more  applications such  as  Web  server,  remote desktop, DNS,  Mail,  Map/ 
Reduce,  etc. We assume all PMs Share back end storage.

The multiplexing of VMs to PMs   is managed using the Usher framework [7]. The main logic of our 
system is implemented as a set of plug-ins to usher.  Each node runs an  Usher  local  node  
manager (LNM)  on  domain 0 which collects the usage  statistics of resources for each VM on that 
node.  The CPU and n e t w o r k usage c a n  be calculated by monitoring the   scheduling events   in 
Xen.  The memory usage   with in a   VM,   however, is   not   visible   to   the hypervisor. One 
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approach is to infer memory shortage of a VM by observing its swap activities [8]. Unfortunately, 
the guest OS is required to install a separate swap partition. Furthermore, it may   be too late to 
adjust   the   memory allocation by the time swapping occurs.  Instead we implemented a working
set prober (WS Prober)   on  each hypervisor  to   estimate  the   working  set   sizes   of  VMs 
running on it. We use the random page sampling technique as in the VM ware  ESX Server  [9].The 
statistics collected  at each  PM are  forwarded to the Usher   central   controller (Usher   CTRL)  
where  our   VM scheduler runs.  The VM Scheduler is invoked periodically and  receives  from the 
LNM the resource demand history of VMs,  the  capacity   and  the  load  history of  PMs,  and  the 
current layout  of VMs on PMs. The scheduler has s e v e r a l    components. The predictor predicts 
the   future resource demands of  VMs  and   the future load of PMs based  on past statistics.  We 
compute the load of a PM by aggregating the resource usage of its VMs. The LNM at each  node  
first attempts to satisfy  the  new  demands locally  by  adjusting the resource allocation of VMs 
sharing the same  VMM. Xen can change  the CPU allocation among the VMs by adjusting their  
weights in  its  CPU  scheduler. The MM Allotter on domain 0 of each node  is responsible for 
adjusting the local memory allocation.

The  hot  spot  solver  in our  VM Scheduler detects if the resource utilization of  any  PM  is  above  
the  hot threshold (i.e., a hot  spot).  If so, some VMs running on them will be migrated away to 
reduce their load.  The cold spot solver checks if the average utilization of actively used PMs (APMs) is 
below the green computing threshold. If so, some of those PMs could potentially be turned off to save 
energy. It identifies the set of PMs whose utilization is below the cold threshold (i.e., cold spots) and 
then attempts to migrate away all their VMs. It then compiles a migration list of VMs and passes  it 
to U s h e r  C T R L  f o r  e x e c u t i o n .  

3   The Skewness Algorithm 

We introduce the concept of skewness to quantify the unevenness in the utilization of multiple 
resources on  a server.  Let n be the number of resources we consider ri be the utilization of the ith 

resource. We define the resource skewness of a server  p as 

sffiffiffi
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Skewness  ðpÞ ¼ X ri2

where r  is  the   average  utilization  of  all  resources  for  server    p.   In   practice,  not  all   types    
of   resources  are performance critical  and  hence  we  only  need  to  consider bottleneck  
resources in the above calculation. By minimizing the skewness, we can combine different types of 
workloads nicely and   improve the overall utilization of server resources. In the following, we 
describe the details of our algorithm. Analysis of the a l go r i t h m is presented in   Section 1.. 

3.1    Hot and Cold Spots 

Our algorithm e x e c u t e s  periodically t o evaluate th e  resource allocation status based on the 
p r e d i c t e d  future resource demands of VMs. We define  a server  as a hot spot if  the  utilization  
of  any  of  its  resources  is  above   a  hot threshold. This indicates that the  server i s  overloaded 
and hence some VMs running on it should be migrated away. We define the temperature of a hot 
spot p as the square sum of its resource utilization beyond the hot threshold, move o n t o  t h e  
next  ho t  sp ot .  Note t h a t  e a c h  run o f  the algorithm migrates  a w a y    at   most   one   VM 
f r o m    the overloaded server.  This does not necessarily eliminate the hot spot, but at least 
reduces its temperature. If it remains a hot spot in the next decision run, the algorithm will 
repeat this process.  It is possible to design the algorithm so that it can migrate away multiple
VMs during each run.  But this can add m o r e  load on the related servers during a period when 
they are already overloaded. We decide to  use this more c o n s e r v a t i v e  approach and leave t h e  
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system some time to react before initiating additional migrations.

3.2. Gree n Computing

When  the  resource utilization of active  servers is too  low, some  of  them   can  be  turned off  to  
save energy. This is where R is the set of overloaded resources in server p and rt is t h e  hot   
threshold for resource r. (Note that only overloaded resources are considered in the calculation.) 
The temperature of a hot spot reflects its degree of overload. If a server is  not a hot spot, its 
temperature is zero.

We define a server as a cold spot if the utilizations of all its resources are below a cold threshold. This 
indicatesthat the server is mostly idle and a potential candidate to turn off to save energy .   
However, we do so only when the average resource utilization of all actively used servers (i.e., 
APMs) in the system is below a green computing threshold. A server is actively used if it has at least 
one VM running. Otherwise, it is inactive.  Finally,  we  define  the  warm threshold to be a level of 
resource utilization that is sufficiently high to justify having  the   server   running  but   not   so  
high   as  to  risk becoming a hot spot  in the face of temporary fluctuation of application resource 
demands.

Different   types o f  resources can have d i f f e r e n t  thresh- olds. For example, we can define the hot 
thresholds for CPU and memory resources to be 90 and 80 percent, respectively. Thus a server is  a 
hot spot if either its CPU usage is above 90 percent or its memory usage is  above 80 percent.

3.3   Hot Spot Mitigation

We sort the list of hot spots in the system in descending temperature (i.e., we handle the hottest 
one first). Our goal is to eliminate all hot spots if possible. Otherwise, keep their temperature as 
low as possible. For each server p, we first decide which of its VMs should be migrated away. We sort 
its list of VMs based on the resulting temperature of the server if that VM is migrated away.  We aim 
to migrate away the VM that can reduce the server’s temperature the most. In case of ties, we select 
the VM whose removal can reduce the skewness of the server the most. For each VM in the list, we 
see if we can find a destination server to accommodate it. The server must not become a hot spot 
after accepting this VM. Among all such servers, we select one whose skewness can be reduced the 
most by accepting this VM. Note that this reduction can be negative which means we select the 
server whose skewness increases the least. If a destination server is found, we record the migration 
of the VM to that server and update the predicted load of related servers. Otherwise, we move onto 
the next VM in the list and try to find a destination server for it. As long as we can find a 
destination server for any of its VMs, we consider this run of the algorithm a success and then 
handled in our green computing algorithm. The challenge here is to reduce the number of active 
servers during low load without sacrificing performance either now or in the future. We need to 
avoid oscillation in the system.

Our green computing algorithm is invoked when the average utilizations of all resources on 
active servers are below the green computing threshold. We sort the list of cold spots in the system 
based on the ascending order of their memory size. Since we need to migrate away all its VMs before 
we can shut down an underutilized server, we define the memory size of a cold spot as the aggregate 
memory size of all VMs running on it. Recall that our model assumes all VMs connect to share back-
end storage. Hence, the cost of a VM live migration is determined mostly by its memory footprint. 
Section 7 in the supplementary file explains why the memory is a good measure in depth. We try 
to eliminate the cold spot with the lowest cost first.

For a cold spot p, we check if we can migrate all its VM somewhere else.  For each VM on p, we try  to  
find a destination server to accommodate it. The resource utilizations of the server after accepting 
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the VM must be below the warm threshold. While we can save energy by consolidating underutilized 
servers, overdoing it may create hot spots in the future. The warm threshold is designed to 
prevent that. If multiple servers satisfy the above criterion, we prefer one that is not a current cold 
spot. This is because increasing load on a cold spot reduces the likelihood that it can be eliminated. 
However, we will accept a cold spot as the destination server if necessary. All things being equal, we 
select a destination server whose skewness can be reduced the most by accepting this VM. If we can 
find destination servers for all VMs on a cold spot, we record the sequence of migrations and   
update the predicted load of related servers. Otherwise, we do not migrate any of its VMs. The 
list of cold spots is also updated because some of them may no longer be cold due to the proposed 
VM migrations in the above process.

The above consolidation adds extra load onto the related servers. This is not as serious a problem 
as in the hot spot mitigation case because green computing is initiated only when the load in the 
system is low. Nevertheless, we want to bound the extra load due to server consolidation. We 
restrict the   number of cold  spots  that  can be eliminated in each  run  of  the  algorithm to  be  no  
more than  a  certain percentage of active servers in the system. This is called the consolidation limit. 

Note that we eliminate cold spots in the system only when the average load of all active servers 
(APMs) is below the green computing threshold. Otherwise, we leave those cold spots there as 
potential destination machines for future offloading. This is consistent with our philosophy that 
green computing should be conducted conservatively.

4.  Simulations

We evaluate the performance of our algorithm using trace driven simulation. Note that our 
simulation uses the same code base for the algorithm as the real implementation in the 
experiments. This ensures the fidelity of our simulation results. Traces are per minute server 
resource utilization, such as CPU rate, memory usage, and network traffic statistics, collected using  
tools like “perfmon” (Windows), the “/proc” file system (Linux), “pmstat/vmstat/netstat” 
commands (Solaris), etc.. The raw traces are pre-processed into “Usher” format so that the simulator
can read them. We collected the  traces from a variety of sources:

• Web InfoMall.  The l a r g e s t  online Web a r c h i v e  in China (i.e., the counterpart of Internet 
Archive in the US) with more than three billion archived Web pages.

• Real course. The largest online distance l e a r n i n g  system in China with servers distributed 
across 13 major cities.

• Amazing Store.  The l a r g e s t  P2P s t o r a g e  system in China.

We also collected traces from servers and desktop computers in our university including one of our   
mail servers, the central DNS server, and desktops in our department. We post processed the 
t ra ces  based on days collected and use random sampling and linear combination of the data sets to 
generate the workloads needed. All simulation in this section uses the real trace workload unless 
otherwise specified.

We used the FUSD load prediction algorithm with " ¼ 0:2, # ¼ 0:7, and W ¼ 8. In a dynamic system, 
those parameters represent good knobs to tune the performance of the system adaptively. We 
choose the default parameter values based on empirical experience working with many Internet 
applications. In the future, we plan to explore using AI or control theoretic approach to find near 
optimal values automatically. 
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4.1    Effect of Thresholds on APMs

                                       

Figure 2 Impact of thresholds on the number of APMs.

We first evaluate the effect of the various thresholds used in our algorithm. We simulate a system 
with 100 PMs and 1,000 VMs ( selected randomly from the trace). We use random to PM mapping in 
the initial layout. The scheduler is invoked once per minute. The bottom part of Fig. 2 shows the 
daily load variation in the system. The x- axis is the time of the day starting at 8 am. The y-axis is 
overloaded with two meanings: the percentage of the load or the percentage of APMs (i.e., Active 
PMs) in the system. Recall that a PM is active (i.e., an APM) if it has at least one VM running. As can 
be seen from the figure, the CPU load demonstrates diurnal patterns which decrease substantially 
after midnight. The memory consumption is fairly stable over the time. The network utilization 
stays very low.

The top part of Fig. 2 shows how the percentages of APMs vary with the load for different 
thresholds in our algorithm. For example, “h0.7 g0.3 c0.1” means that the hot, the green 
computing, and the cold thresholds are 70, 30, and 10 percent, respectively. Our algorithm can be 
made more or less aggressive in its migration decision by tuning the thresholds. The figure shows   
that lower hot thresholds cause more aggressive migrations to mitigate hot spots  in the system and  
increases the number of APMs, and higher cold and green computing thresholds cause more 
aggressive consolidation which leads to a smaller number of APMs. T he percentage of APMs in our 
algorithm follows the load pattern closely.

To examine the performance of our algorithm in more extreme situations, we also create a 
synthetic workload which mimics the shape of a sine function (only the positive part) and ranges 
from 15 to 95 percent with a 20 percent random fluctuation. It has a much larger peak-to-mean 
ratio than the real trace. The results are shown in Section 2 of the supplementary file, which c a n 
be found on the Computer Society Digital Library.

4.2    Scalability of the Algorithm 
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Figure 3. Scalability of the algorithm with system size.

We evaluate the scalability of our algorithm by varying the number of VMs in the simulation 
between 200 and 1,400. The ratio of VM to PM is 10:1. The results are shown i n  

Fig. 3. Fig. 3a shows that the average decision time of our algorithm increases with the system size.  
The speed of increase is between linear and quadratic. We break down the decision time into two   
parts: hot spot mitigation (marked as “hot”) and green computing (marked as “cold”). We find that   
hot spot mitigation contributes more to the decision time. We also find that the decision time for the 
synthetic workload is higher than that for the real trace due to the large variation in the synthetic 
workload. With 140 PMs and 1,400 VMs, the decision time is about 1.3 seconds for the synthetic 
workload and 0.2 second for the real trace.

Fig. 3b shows the average number of migrations in the whole system during each decision. The 
number of migrations is small and increases roughly linearly with the system size. We find that 
hot spot contributes more to the number of migrations. We also find that the number of 
migrations in the synthetic workload is higher than that in the real trace.  With 140 PMs and 1,400 
VMs, on average each run of our algorithm incurs about three migrations in the whole system for the 
synthetic workload and only  1.3 migrations for the real trace.  

4.3    Effect of Load Prediction 
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Figure. 4. Effect of load prediction

We compare the execution of our algorithm with and without load prediction in Fig. 4. When load 
prediction is disabled, the algorithm simply uses the last observed load in its decision making. Fig. 
4a shows that load prediction significantly reduces the average number of hot spots in the system 
during a decision run. Notably, prediction prevents over 46 percent hot spots in the simulation 
with 1,400 VMs. This demonstrates its high effectiveness in preventing server overload proactively. 
Without prediction, the algo- rithm tries to consolidate a PM as soon as its load drops below the   
threshold. With prediction, the algorithm correctly foresees that the load of the PM will increase 
above the threshold shortly and hence takes no action. This leaves the PM in the “cold spot” state for a 
while. However, it also reduces placement churns by avoiding unnecessary migrations due to 
temporary load fluctuation. Consequently, the number of migrations in the system with load 
prediction is smaller than that without prediction as shown in Fig.  4c. We  can  adjust   the  
conservativeness  of load  prediction by  tuning its  parameters, but  the  current configuration 
largely  serves  our  purpose (i.e., error  on the side  of caution). The  only  downside of having more  
cold spots  in  the  system is that  it may  increase  the  number  of APMs. This is investigated in Fig. 
4b which shows that the average numbers of APMs remain essentially the same with or without 
load prediction (the difference is less than 1 percent). This is appealing because significant overload 
protection can be achieved without sacrificing resources efficiency. Fig. 6c compares the average 
number of migrations per VM in each decision with and without load prediction. It shows that each 
VM experiences 17 percent fewer migrations with load prediction.

5 Experiments

Our experiments are  conducted using  a group of 30 Dell Power Edge blade  servers with  Intel 
E5620 CPU and  24 GB of  RAM.  The  servers run   Xen-3.3  and   Linux  2.6.18. We  deploy 8  VMs  on  
each server  at  the  beginning. Each VM is configured with  one virtual CPU  and  two  gigabyte 
memory. Self-ballooning is enabled to allow the hypervisor to reclaim un used memory. Each VM 
runs the server side of the TPC-W benchmark corresponding to various types of the workloads: 
browsing, shopping, hybrid workloads, etc.  Our algorithm is invoked every  10 minutes.
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5.1    Algorithm Effectiveness 

Figure 5. #APMs varies with TPC-W load. 

We evaluate the effectiveness of our algorithm in overload mitigation and green computing. We 
start with a small scale experiment consisting of three PMs and five VMs so that we can present the 
results for all servers in Fig.  5. Different shades are used for each VM. All VMs are configured with
128 MB of RAM. An Apache server runs on each VM. We use httperf to invoke CPU intensive PHP 
scripts on the Apache server. This allows us to subject the VMs to different degrees of CPU load by 
adjusting the client request rates. The utilization of other resources are kept low. We first increase 

the CPU load of the three VMs on PM1 to create an overload. Our algorithm resolves the overload 

by migrating VM3 to PM3. It reaches a stable state under high load around 420 seconds. Around 890 

seconds, we decrease the CPU load of all VMs gradually. Because the FUSD prediction algorithm is 
conservative when the load decreases, it takes a while before green computing takes effect. Around 
1,700 seconds, VM3 is migrated from PM3 to PM2 so that PM3 can be put into the standby mode.  

Around 2,200 seconds, the two VMs on PM1 are migrated to PM2 so that PM1 can be released as 

well. As the load goes up and down, our algorithm will repeat the above process: spread over or 
consolidate the VMs as needed.

Next we extend the scale of the experiment to 30 servers. We use the TPC-W benchmark for this 
experiment. TPC-W is an industry standard benchmark for e-commerce even when idle, 
consumes several hundred megabytes of memory. After two hours, we increase the load 
dramatically to emulate a “flash crowd” event.  The algorithm wakes up the stand-by servers to 
offload the hot spot servers. The figure shows that the number of APMs increases accord- ingly.  After 
the request rates peak for about one hour, we reduce the load gradually to emulate that the flash 
crowd is over. This triggers green computing again to consolidate the underutilized servers. Fig. 5 
shows that over the course of the experiment, the number of APM rises much faster than it falls. This 
is due  to the effect of our  FUSD load  prediction. The figure also shows  that the number of APMs 
remains at a slightly  elevated level after the flash crowd. This is because the TPC-W servers 
maintain some  data  in cache and  hence its memory usage  never  goes back to its original level. 

Relative time 
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5.2    Impact of Live Migration 

Figure 6. Impact  of live migration on TPC-W performance.

One concern about the use of VM live migration is its impact on application performance. Previous 
studies have found this impact to be small [5]. We investigate this impact in our own experiment. 
We extract the data on the 340 live migrations in our 30 server experiment above.  We find that 139 of 
them are for hot spot mitigation. We focus on these migrations because that is when the potential 
impact on application performance is the most. Among the 139 migrations, we randomly pick seven 
corresponding TPC-W sessions undergoing live migration. All these sessions run the “shopping mix” 
workload with 200 emu- lated browsers. As a target for comparison, we rerun the session with the 
same parameters but perform no migra- tion and use the resulting performance as the baseline. Fig. 
6 shows the normalized Web interactions per second (WIPS) for the 7 sessions. WIPS is the 
performance metric used by TPC-W. The figure shows that most live migration sessions exhibit no 
noticeable degradation in performance compared to the baseline: the normalized WIPS is close to
the only exception is session 3 whose degraded performance is caused by an extremely busy server 
in the original experiment. Next we take a closer look at one of the sessions in Fig. 6 and show how 
their performances vary over time.  The figure verifies that live migration causes no noticeable 
performance degradation. The duration of the migration is under 10 seconds. Recall that our 
algorithm is invoked every 10 minutes.

5.3    Resource Balance

Figure 7  Resource balance for mixed workloads

Recall that the goal of the skewness algorithm is to mix workloads with different resource 
requirements together so that the overall utilization of server capacity is improved. In this 
experiment, we see how our algorithm handles a mix of CPU, memory, and network intensive 
workloads. We vary the CPU load as before. We inject the network load by sending the VMs a series 
of network packets. The memory intensive applications are created by allocating memory on 
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demand. Again we start with a small scale experiment consisting of two PMs and four VMs so that we 
can present the results for all servers in Fig. 7. The two rows represent the two PMs. The two 
columns represent the CPU and network dimensions, respectively. The memory consumption is 

kept low for this experiment. Initially, the two VMs on PM1 are CPU intensive while the two VMs on 
PM2 are network intensive. We increase the load of their bottleneck resources gradually. Around 

500 seconds, VM4 is migrated from PM2 to PM1 due to the network overload in PM2. Then around 

600 seconds, VM1 is migrated from PM1 to PM2 due to the CPU overload in PM1. Now the system   

reaches a stable state with a balanced resource utilization for both PMs—each with a CPU intensive 
VM and a network intensive VM. Later we decrease the load of all VMs gradually so that both PMs 
become cold spots. We can see that the two VMs on PM1 are consolidated to PM2 by green 

computing.

Next we extend the scale of the experiment to a group of 72 VMs running over 8 PMs.  Half of the 
VMs are CPU intensive, while the other half is memory intensive. Initially, we keep the load of all VMs 
low and deploy all CPU intensive VMs on PM4 and PM5 while all memory intensive VMs on PM6 and 

PM7. Then we increase the load on all VMs gradually to make the underlying PMs hot spots.  Fig. 12 

shows how the algorithm spreads the VMs to other PMs over time.  As we can see from the figure, the 
algorithm balances the two types of VMs appropriately. The figure also shows that the load across   
the   set of PMs becomes well balanced as we increase the load.

6    Related Work

Automatic scaling of Web applications was previously studied in [14] and [15] for data center 
environments. In Muse [14], each server has replicas of all web applications running in the system. 
The dispatch algorithm in a frontend L7-switch makes sure requests are reasonably served while 
minimizing the number of underutilized servers. Work [15] uses n e t w o r k flow a l go r i t h ms to 
allocate   the load of an application among its running instances.

6.1    Resource Allocation by Live VM Migration

VM live migration is a widely used technique for dynamic resource allocation in a virtualized 
environment [8], [12], 

Our work also belongs to this category. Sandpiper combines multidimensional load information 
into a single Volume metric [8]. It sorts the list of PMs based on their volumes and the VMs in each PM 
in their volume-to-size ratio (VSR). This unfortunately abstracts away critical information needed 
when making the migration decision. It then considers the PMs and the Ms in the presorted order. 
The results are analyzed in Section 5 of the supplementary file, which is available online, to show   
how they behave differently. In addition, their work has no support for green computing and differs   
from ours in many other aspects such as load prediction. Dynamic placement of virtual servers to 
minimize SLA violations is studied in [12]. They model it as a bin packing problem and use the well-
known first-fit approximation algorithm to calculate the VM to PM layout periodically. That 
algorithm, however, is designed mostly for offline use. It is likely to incur a large number of 
migrations when applied in online environment where the resource needs of VMs change 
dynamically.

6.2    Green Computing

Many efforts have been made to curtail energy consumption in data centers. Hardware-based 
approaches include novel thermal design for lower cooling power, or adopting power-
proportional and   low-power hardware.  

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 249

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

D
ow

nl
oa

de
d 

fro
m

 w
w
w
.e

dl
ib
.a

sd
f.r

es
.in



Our work belongs to the category of pure-software low- cost solutions [10], [12], [14]. 

7.  Conclusion

We have presented the design, implementation, and evalua- tion of a resource management 
system for cloud computing services. Our system multiplexes virtual to physical resources 
adaptively based on the changing demand. We use the skewness metric to combine VMs with 
different resource characteristics appropriately so that the capacities of servers are well utilized. 
Our algorithm achieves both overload avoidance and green computing for systems with multi- 
resource constraints.
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