
Entity Mining Extraction Using Sequential Rules

Thota Srilatha, Gorantala.Sindhuri, HimaBindu Reesu

AssistantProfessor(M.TechCSE), Balaji Institute of Engineering and sciences. Andhrapradesh

Abstract: A comparative sentence expresses an ordering relation between two sets of entities with respect
to some common features. For example, the comparative sentence “Canon’s optics are better than those of
Sony and Nikon” expresses the comparative relation Comparing one thing with another is a typical part of
human decision making process. However, it is not always easy to know what to compare and what are the
alternatives. To address this difficulty, we present a new way for automatically extracting comparable
entities from comparative questions based on the pattern. We propose new techniques based on these two
types of sequential rules to perform the tasks.

Introduction

Comparing alternative options is one of the essential things in decision-making that we carry out every day.
Example, if someone is interested in certain products such as digital cameras, he or she would want to know
what the different alternatives we have and compare different cameras before making a purchase. This type
of comparison activity is very common in our daily life but requires high knowledge skill. And Magazines
such as Consumer Reports and PC Magazine and online media such as CNet.com strive in providing
editorial comparison content and surveys to satisfy this need. In World Wide Web, a comparison activity
typically involves: search for relevant web pages containing information about the targeted products, find
competing products, read reviews, and identify pros and cons. In this paper, we focus on finding a set of
comparable entities given a users input entity. For example, given an entity, Nokia N95 (a cellphone), we
want to find comparable entities such as Nokia N82, iPhone and so on. In general, it is difficult to decide if
two entities are comparable or not since people do compare apples and oranges for various reasons. For
example, “Ford” and “BMW” might be comparable as “car manufacturers” or as “market segments that their
products are targeting”, but we rarely see people comparing “Ford Focus” (car model) and “BMW 328i”.
Things also get more complicated when an entity has several functionalities. For example, one might
compare “iPhone” and “PSP” as “portable game player” while compare “iPhone” and “Nokia N95” as “mobile
phone”. Fortunately, plenty of comparative questions are posted online, which provide evidences for what
people want to compare, e.g. “Which to buy, iPod or iPhone?”. We call “iPod” and “iPhone” in this example as
comparators. In this paper, we define comparative questions and comparators as:

Comparative question: A question that intends to compare two or more entities and it has to mention
these entities explicitly in the question.

Comparator: An entity which is a target of comparison in a comparative question.

Comparisons can be subjective or objective. For example, a typical opinion sentence is “The picture quality
of camera x is great” A subjective comparison is “the picture quality of camera x is better than that of camera
y.” An objective comparison is “car x is 2 feet longer than car y”. We can see that comparative sentences use
different language constructs from typical opinion sentences (although the first comparative sentence
above is also an opinion). In this paper, we study the problem of comparative sentence mining. It has two
tasks:

1. Given a set of evaluative texts, identify comparative sentences from them, and classify the
identified comparative sentences into different types (or classes).

2. Extract comparative relations from the identified sentences. This involves the extraction of entities
and their features that are being compared, and comparative keywords. The relation is expressed
with (<relationWord>, <features>, <entityS1>, <entityS2>)

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 225

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

D
ow

nl
oa

de
d

fro
m

 w
w
w
.e

dl
ib
.a

sd
f.r

es
.in

For example, we have the comparative sentence “Canon’s optics is better than those of Sony and Nikon.” The
extracted relation is: (better, {optics}, {Canon}, {Sony, Nikon})

Both tasks are very challenging. Although we see that the above sentences all contain some indicators i.e.,
“better”, “longer”, many sentences that contain such words are not comparatives, e.g., “I cannot agree with
you more”. The second step is a difficult information extraction problem. For the first task, we present an
approach that integrates class sequential rules (CSR) and naïve Bayesian classification to perform the task.
This task is studied in detail in (Jindal & Liu 2006). We include it for completeness. For the second task, a
new type of rules called label sequential rules (LSR) is proposed for extraction. Our results show that LSRs
outperform Conditional Random Fields (CRF) (Lafferty, McCallum & Pereira 2001), which is perhaps the
most effective extraction method so far (Mooney & Bunescu 2005).

Types of Sequential Rules

We now start to present the proposed techniques, which are based on two types of sequential rules. Mining
of such rules is related to mining of sequential patterns (SPM) (Agrawal and Srikant 1994). Given a set of
input sequences, SPM finds all subsequences (called sequential patterns) that satisfy a user-specified
minimum support threshold. Below, we first explain some notations, and then define the two new types of
rules, Class sequential rules (CSR) used in classification of sentences, and label sequential rules (LSR) used in
relation item extraction. For more details about these types of rules and their mining algorithms, please see
(Liu 2006).

Let I = {i1, i2, …, in} be a set of items. A sequence is an ordered list of itemsets. An itemset X is a non-empty
set of items. We denote a sequence s by (a1a2…ar), where ai is an itemset, also called an element of s. We
denote an element of a sequence by {x1, x2, …, xk}, where xj is an item. An item can occur only once in an
element of a sequence, but can occur multiple times in different elements. A sequence s1 = (a1a2…ar) is a
subsequence of another sequence s2 = (b1b2…bm) or s2 is a supersequence of s1, if there exist integers 1 ≤ j1 < j2

< … < jr-1 ≤ jr such that a1 ⊆ bj1 , a2 ⊆ bj2, …., ar ⊆ bjr. We also say that s2 contains s1.

Class Sequential Rules

Let S be a set of data sequences. Each sequence is labeled with a class y. Let Y be the set of all classes, I ∩ Y
= Ø. Thus, the input data D for mining is represented with D = {(s1, y1), (s2, y2), …, (sn, yn)}, where si is a
sequence and yi ∈ Y is its class. A class sequential rule (CSR) is an implication of the form X→ y, where X is a
sequence, and y ∈ Y. A data instance (si, yi) in D is said to cover the CSR if X is a subsequence of si. A data
instance (si, yi) is said to satisfy a CSR if X is a subsequence of si and yi = y. The support (sup) of the rule is
the fraction of total instances in D that satisfies the rule. The confidence (conf) of the rule is the proportion
of instances in D that covers the rule also satisfies the rule. Given a labeled sequence data set D, a minimum
support (minsup) and a minimum confidence (minconf) threshold, CSR mining finds all class sequential
rules in D.

Label Sequential Rules

A label sequential rule (LSR) is of the following form,

X→ Y,

where Y is a sequence and X is a sequence produced from Y by replacing some of its items with wildcards. A
wildcard, denoted by a ‘*’, matches any item. The definitions of support and confidence are similar to those
above. The input data is a set of sequences, called data sequences.

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 226

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

D
ow

nl
oa

de
d

fro
m

 w
w
w
.e

dl
ib
.a

sd
f.r

es
.in

Mining Indicative Extraction Patterns

Our weakly supervised IEP mining approach is based on two key assumptions:

• If a sequential pattern can be used to extract many reliable comparator pairs, it is very likely to be
an IEP.

• If a comparator pair can be extracted by an IEP, the pair is reliable.

Based on these two assumptions, we design our bootstrapping algorithm.

The bootstrapping process starts with a single IEP. From it, we extract a set of initial seed comparator pairs.
For each comparator pair, all questions containing the pair are retrieved from a question collection and
regarded as comparative questions. From the comparative questions and comparator pairs, all possible
sequential patterns are generated and evaluated by measuring their reliability score defined later in the
Pattern Evaluation section. Patterns evaluated as reliable ones are IEPs and are added into an IEP
repository. Then, new comparator pairs are extracted from the question collection using the latest IEPs. The
new comparators are added to a reliable comparator repository and used as new seeds for pattern learning
in the next iteration. All questions from which reliable comparators are extracted are removed from the
collection to allow finding new patterns efficiently in later iterations. The process iterates until no more
new patterns can be found from the question collection.

Pattern Generation

To generate sequential patterns, we adapt the surface text pattern mining method introduced in
(Ravichandran and Hovy, 2002). For any given comparative question and its comparator pairs, comparators
in the question are replaced with symbol $Cs. Two symbols, #start and #end, are attached to the beginning
and the end of a sentence in the question. Then, the following three kinds of sequential patterns are
generated from sequences of questions:

Lexical patterns: Lexical patterns indicate sequential patterns consisting of only words and symbols ($C,
#start, and #end). They are generated by suffix tree algorithm (Gusfield, 1997) with two constraints: A
pattern should contain more than one $C, and its frequency in collection should be more than an
empirically determined number !.

Generalized patterns: A lexical pattern can be too specific. Thus, we generalize lexical patterns by
replacing one or more words with their POS tags. 2" − 1 generalized patterns can be produced from a lexical
pattern containing N words excluding $Cs.

Specialized patterns: In some cases, a pattern can be too general. For example, although a question “ipod
or zune?” is comparative, the pattern “<$C or $C>” is too general, and there can be many noncomparative
questions matching the pattern, for instance, “true or false?”. For this reason, we perform pattern
specialization by adding POS tags to all comparator slots. For example, from the lexical pattern “<$C or
$C>” and the question “ipod or zune?”, “<$C/NN or $C/NN?>” will be produced as a specialized pattern.
Note that generalized patterns are generated from lexical patterns and the specialized patterns are
generated from the combined set of generalized patterns and lexical patterns. The final set of candidate
patterns is a mixture of lexical patterns, generalized patterns and specialized patterns.

Conclusion

This paper studied the new problem of identifying comparative sentences in evaluative texts, and extracting
comparative relations from them. Two techniques were proposed to perform the tasks, based on class
sequential rules and label sequential rules, which give us syntactic clues of comparative relations.
Experimental results show that these methods are quite promising.

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 227

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

D
ow

nl
oa

de
d

fro
m

 w
w
w
.e

dl
ib
.a

sd
f.r

es
.in

References

1. Mary Elaine Califf and Raymond J. Mooney. 1999.Relational learning of pattern-match rules for
information extraction. In Proceedings of AAAI’99 /IAAI’99.

2. Claire Cardie. 1997. Empirical methods in information extraction. AI magazine, 18:65–79.
3. Nitin Jindal and Bing Liu. 2006a. Identifying comparative sentences in text documents. In

Proceedings of SIGIR ’06, pages 244–251.
4. Nitin Jindal and Bing Liu. 2006b. Mining comparative sentences and relations. In Proceedings of

AAAI ’06.
5. Greg Linden, Brent Smith and Jeremy York. 2003.Amazon.com Recommendations: Item-to-Item

Collaborative Filtering. IEEE Internet Computing, pages 76-80.
6. Raymond J. Mooney and Razvan Bunescu. 2005. Mining knowledge from text using information

extraction. ACM SIGKDD Exploration Newsletter, 7(1):3–10.
7. Dragomir Radev, Weiguo Fan, Hong Qi, and Harris Wu and Amardeep Grewal. 2002. Probabilistic

question answering on the web. Journal of the American Society for Information Science and
Technology, pages 408–419.

8. Deepak Ravichandran and Eduard Hovy. 2002. Learning surface text patterns for a question
answering system. In Proceedings of ACL ’02, pages 41–47.

9. Ellen Riloff and Rosie Jones. 1999. Learning dictionaries for information extraction by multi-level
bootstrapping. In Proceedings of AAAI ’99 /IAAI ’99, pages 474–479.

10. Ellen Riloff. 1996. Automatically generating extraction patterns from untagged text. In Proceedings
of the 13th National Conference on Artificial Intelligence, pages 1044–1049.

11. Stephen Soderland. 1999. Learning information extraction rules for semi-structured and free text.
Machine Learning, 34(1-3):233–272.

Proceedings of The Intl. Conf. on Information, Engineering, Management and Security 2014 [ICIEMS 2014] 228

ICIEMS 2014 ISBN : 978-81-925233-3-0 www.edlib.asdf.res.in / www.iciems.in

D
ow

nl
oa

de
d

fro
m

 w
w
w
.e

dl
ib
.a

sd
f.r

es
.in

