Proceedings of the Intl. Conf. on Inter Disciplinary Research in Engineering & Technology 2014 [ICIDRET 2014] 172

Bi Objective Optimization for Bug Triage
V. Akila, Dr. G. Zayaraz, R. Anitha

Dept. of Computer Science and Engineering, Pondicherry Engineering College

Abstract- Open Source Software development is self-organizing and dynamic in nature. Software
maintenance is subject to error, cost and time overruns. Issue tracking is the major component of go e
maintenance. The bug triager, is an individual who chooses what to do with an approaching bug rep nd
to whom to prescribe the bug. The number of bug reports submitted day by day increases. T, laysical
prescribing work becomes troublesome and fault prone. The bug prescribed to a developer tossed
to another developer. The Bug Tossing Graph codifies the tossing relation that exists amo evelopers.
Automated support is needed to find the optimal set of developers who can addres %& The existing
techniques that work on Bug Toss Graph relies on the Weight based Breadt)ﬁ *earch (WBFS)
Algorithm. This technique tries to reduce the number of hops between the first e of the bug to the
final developer, but ignores the transition probability information present in ges. To this end, this
paper presents a technique based on Bi-objective Optimization that maximi ansition probability and
minimizes the number of hops. In order to validate the proposed tec’ﬁoxperiments were conducted
using the bug dataset of Eclipse project. The various parameters in X Precision, (ii) Recall and (ii)
Mean Steps to Resolve (MSTR) are considered. The results indica& he proposed technique is better
than the existing techniques.

Keywords: Open Source Software; Bug Tossing Graph, Bugg] Nage, and Optimization.

l. Intr

Software engineering is even today based on ins nd encounter. Software archives hold an abundance
of data about software ventures. Source co stores, bug archives, filed correspondence, sending logs,
code archives are examples of software arc at are normally accessible for most software ventures [1].
If knowledge inferred from the softwar es can be put in use in software engineering then it can lead
to considerable reduction in the cof,McMed and time spent. Bug archives track the history of bug reports
or characteristic demands that e a nted by clients and developers. The designers and clients submit
bug reports to a bug storehou g. Bugzilla) in Open Source programming improvement. Bugzilla and
Jira are examples of bug ar ¥ Bug archives give a dataset of issue reports for a software enterprise.
Individuals assume diver as they collaborate through reports. The individual who submits the report
is the reporter of the . The triager is the individual who judges if the report is serious and who
assigns developers reports. A contributor might additionally comment on the solution to the bug.
Finally, a devel y resolve the bug and perform a commit operation. Bug Triaging involves classifying
the bug, checjed or validity, assigning severity level and most importantly, assigning the bug to the

appropriz$ Ioper [2].

The c@ y information in the bug archive gives information on the activities that happened during the

g gt a bug. It includes the reporter information, assignee information, tossing information and
tting information. This information for a set of bug reports is captured in a Bug Toss Graph which is
based on Markov Model. The nodes are the developers and the edges are the tossing relations that exist
among them. The weights on the edges are the transition probability that reflects the frequency of tosses
among the developers.

Il. Related Work

Cubranic and Murphy et al. [3] were the first to propose the idea of utilizing content grouping strategies to
semi-computerize the methodology of bug assignment. They separated words from the title and summary

www.icidret.in ISBN : 978-81-929742-0-0 www.edlib.asdf.res.in



Proceedings of the Intl. Conf. on Inter Disciplinary Research in Engineering & Technology 2014 [ICIDRET 2014] 173

of the bug report. A Naive Bayes classifier was employed. The classifier recommends one or more potential
developers for settling the bug. Anvik et al. [2] improved the machine learning approach by using some
filter techniques. Bug reports labeled invalid were not considered while collecting the data. The data was
trained using supervised machine learning algorithms.

Xuan et al. 4] considered the priorities of developers in bug repositories. Developer prioritization provides
the knowledge of developer priorities to assist software task especially the task of bug triage. Developer
prioritization was made using the socio-technical approach particularly using the comments made by the

developers. .

can lead to reduction in dimensionality of the TDM. Latent semantic indexing method wor for the
dimensionality reduction. Jeong et al. [6] were the first to propose the idea of using Bug T, Graph for
developer recommendations. The Tossing Graph was constructed based on the bug t in&istory Tossing
Graph which is based on the Markov Model. Then Weighted Breadth First Search S algorithm was
employed to detect the bug resolver from the Tossing Graph. WBFS utilizes the nd maximizes the
tossing path reduction. %

Syed et al. [5] proposed a technique which is based on Term to Document Matrix (TDM). Featu?sebtion

Liguo Chen et al. [7] presented an approach based on bug tossing hist d, By using textual similarities
between bug reports. They identified duplicate bugs by calculatin similarities with vector space
model. This approach consists of three steps: First the Tossing Gr; [d¥calculated and then, the textual
similarities are calculated and finally, the sub-graph is obtained ug similarities. In order to reduce
the search failure rate, the vector space model is applied t culate the textual similarities.Pamela
Battacharrya et al. [8] has proposed the idea of machine le&nigg and Bug Tossing Graph to recommend
potential developers for bug fixing. WBFS algorithm w loyed to find the shortest path. They used
different classifiers for machine learning method and found that Naive Bayes was the best among the
different classifiers. Attributes corresponding to th uct component information for a bug are added
and the Tossing Graph is modeled as a multi-f Tossing Graph because tossing probability alone is
insufficient.

From the survey, it is clear that the Qarning methods coupled with Tossing Graph i.e. hybrid
techniques give the best results. ne learning method, Naive Bayes classifier has been widely
applied. In Open Source Softwarge S s, WBFS algorithm is used is used predominantly.

@b I11. Research Contribution
The bug reports are ted from the bug repository. The Bug Toss Graph is constructed based on the

activity data of Qu rts. The transition probabilities are calculated. In order to reduce the tossing path
length and to e the transition probability, the bi-objective shortest path algorithm is employed.

The flow of the automa; ﬁ pg triaging system based on Bi-objective Optimization is illustrated in Figure .1.

Figure L. Flow diagram of Bi-Objective Optimization for Bug Triage

www.icidret.in ISBN : 978-81-929742-0-0 www.edlib.asdf.res.in



Proceedings of the Intl. Conf. on Inter Disciplinary Research in Engineering & Technology 2014 [ICIDRET 2014] 174

The procedure for Bi-objective Optimization is given in Figure.2. The adjacency matrix of the Bug Toss
Graph is given as input to the Bi-objective Optimization as TPM[w]. The Non-Empty Paths (NEP) and
Optimized Path are initialized to ¢. The Maximum Weighted Matrix is determined. For all path in NEP(i),
NEP(i) is checked whether it belongs to the maximum weighted matrix or not. If the above condition is
satisfied, then the NEP(i) is added to the optimized path otherwise the NEP(i) is added to the total path[9].

Begin

I:.itia]ize Non Empty Paths NEP=¢, Optimized path OP(i)=¢
Step 1: Get thetotalpath P(}) . Q
Step 2: Determine M= Max(TPM [w]) \
Step 3: Determine non empty paths NEP() ie P()=¢ .
Step 4: if NEP()e M 6

Step 3: OP({)=OP()+NEP(i) @
Step 6: Else K
Step 7: PA)=P@)+NEP()

Step 8: retum_OP() *

-
f

Figure 2. Procedure for Bi-Objective Optimizatiom

*
>
IV. Implementation and Re t(\\o

To perform the experiment, the bug reports from the available ries of Eclipse project are extracted.
These bug reports have been fixed between 2010-01-01 and 20]2-1%32.These bug reports are saved in Comma
Separated Value (CSV) format. The bug reports which hav refixed or resolved with a vote count of five
were considered.

The bug reports are downloaded and split into tray et and test set. The developer’s activity data was
processed and the names of those developers w anged the status of bug reports to “RESOLVED” are
extracted. Based on the activity data of bug#®gorts, the Bug Tossing Graph was constructed as an actual
path model. The transition probabilities ars ulated in order to reduce the tossing path length. The Bi-
objective shortest path algorithm that @ izes the transition probability as well as reduces the number
of hops is used to predict the opti attf between the assignee and resolver. The predicted path is cross
validated against the test data 'nrgmarameters: (i) precision, (ii) recall and (iii) Mean Steps To Resolve
(MSTR). The experiment was l@d by varying the test data set by 10% , 20% and 30% for the total bug

)

.3b and Figure.3c it is clear that the Bug Triage based on Bi-Objective
sistently better than WBFS algorithm in terms of MSTR.

reports.

From the Figure.3a,
optimization perfor,

Q\ MSTR
$ Testset-30%

20 —_—

2 R} 6

Original hop length

Predicted number of hops
-
© o

e \Weighted Breadth First search algorithm

- Bi-objective shortest path algorithm

Figure.3a. MSTR for 30% Test Data

www.icidret.in ISBN : 978-81-929742-0-0 www.edlib.asdf.res.in



Proceedings of the Intl. Conf. on Inter Disciplinary Research in Engineering & Technology 2014 [ICIDRET 2014]

MSTR
Testset-20%

25

20 —
15 ——

10

S

0

Original hop length

e Weighted Breadth First search algorithm

Bi-objective shortest path algorithm

175

Figure.3b. MSTR for 20% Test Data 6 *

MSTR
Testset-10%

. &
- 20 —

L &)

z 10 / @

3 N e ——

2 1 o X’ ’

Original hop length

e Weighted Breadth First search algorithm \\
Bi-objective shortest path algorithun

Figure.3c. MSTR for 10

From the Figure.4a, Figure.4b and Figure.4c it i

optimization performs consistently better than W rithm in terms of Precision parameter.

Precision

Original hop length
Weighted Breadth Fust search algorithim
@ Bi-objective shortest path algorithm

Q\O Figure.4a. Precision for 30% Test Data

O

Predsion

Original hop length

Weighted Breadth First search algorithm

~—— Bi-objective shortest path algorithm

Figure.4b. Precision for 20% Test Data

that the Bug Triage based on Bi-Objective

www.icidret.in ISBN : 978-81-929742-0-0 www.edlib.asdf.res.in



Proceedings of the Intl. Conf. on Inter Disciplinary Research in Engineering & Technology 2014 [ICIDRET 2014] 176

Precision
Test set-10%

0.6
0.5
0.4
0.3 ~ —

Precision

0.2 —

0.1

Original hop length

Weighted Breadth First search algorithm

-Bi-objective shortest path algorithm

Figure.4c. Precision for 10% Test Data

From the Figure.5a, Figure.5b and Figure.5c it is clear that the Bug Triage based on
performs consistently better than Bi-Objective optimization in terms of Recall parame&

Recall
Test set-30%

0.7
0.6
0.s
0.4
0.3
0.2
0.1
0

Pecall

Recall
Testset-20%

@ Oniginal hop length
Weighted Breadth First search algorithm

Bi-objective shortest path algorithun

Q\O Figure.5b. Recall for 20% Test Data

0.7
.t
=5 0.4
;’_ 0.3
0.2
01
2 R o B
Ornigmal hop length
Weighted Breadth Fust search algonithim
Bi-objective shortest path algorithm
Figure.5c. Recall for 10% Test Data
www.icidret.in ISBN : 978-81-929742-0-0

&
60

algorithm

*

www.edlib.asdf.res.in



Proceedings of the Intl. Conf. on Inter Disciplinary Research in Engineering & Technology 2014 [ICIDRET 2014] 177

V. Conclusion

Bug Triaging is a very important step in Software Maintenance. Herein, the bugs get assigned to a developer
for resolving and if that developer is unable to resolve that bug then it is given to another developer. This
information is captured in Tossing Graphs. The existing techniques for bug triaging focus on weighted
breadth first search methods for reducing the number of hops. In this paper, it is proposed to employ Bi-
objective shortest path algorithms over the tossing graph to find the optimal developers. The Bi-objective
Optimization method was evaluated on the bug data set of eclipse project. The results indicate that Bi-
objective Optimisation gives better results than the WBFS algorithm. The future natural progressign is
system is to explore solutions from the field of search based software engineering for bug triaging. \
*

References @6

1. Ahmed E. Hassan, “The Road Ahead for Mining Software Repositories”, r‘Q&edings of the
Frontiers of Software Maintenance, pp.48-57,2008. § ¢

2. J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” In Pr
Conference on Software Engineering (ICSE), pp. 361-370, 2006. %

3. D. Cubranic and G. C. Murphy, “Automatic bug triage using text cate tion,” In Proceedings of
the Sixteenth International Conference on Software Engm +& Knowledge Engineering
(SEKE'2004), 2004.

gs of International

4. lJifeng Xuan, He Jiang, Zhilei Ren, Weiqgin Zou,”Develope tization in Bug Repositories” In
Proceedings of International Conference on Software Engi g(ICSE), pp.25-35, 2012.
5. Syed Nadeem Ahsan, Javed Ferzund and Franz Wota utomatic Software Bug Triage System

(BTS) Based on Latent Semantic Indexing and Sup,
International Conference on Software Engineeri
6. Gaeul Jeong, Sunghun Kim and Thomas Zi ann, “Improving Bug Triage with Bug Tossing
Graphs”, In Joint 12th European Software iM®ering Conference (ESEC) and 17th ACM SIGSOFT
Symposium on the Foundations of Softw gineering, pp.111-120, Aug 2009.
7. Liguo Chen, Xiaobo Wang and Chz&“lmproving Bug Assignment with Bug Tossing Graphs and

t Wector Machine”, In Proceedings of Fourth
nces, pp.216-221,2009.

Bug Similarities”, International oNerence onBiomedical Engineering and Computer Science
(ICBECS), pp.421-425, Apr 2010,

8. Pamela Bhattacharya, luli ﬁ iu and Christian R. Shelton, “Automated, highly accurate, bug
assignment using machg :& ing and tossing graphs”, Journal of Systems and Software, vol.85,
pp: 2275-2292, May 201

9. Andrea Raith and Ehrgott, “ A Comparison of Solution Strategies for Bi-objective Shortest
Path Problems”, of Computers & Operations Research, Vol.36, Issue 4, pp.1299-1331, April
20009.

{0
&
QO

www.icidret.in ISBN : 978-81-929742-0-0 www.edlib.asdf.res.in



